These results suggest that the previously reported increases in extracellular glutamate induced by ethanol exposure may be due in part to deficits in glutamate transport.
Rationale-Corticotropin releasing factor (CRF) produces anxiety-like and aversive effects when infused directly into the various regions of the brain, including the bed nucleus of the stria terminalis (BNST). However, the CRF receptor subtypes within the BNST mediating these phenomena have not been established.Objectives-We used selective CRF receptor antagonists to determine the receptor subtypes involved in the anxiogenic-like and aversive effects CRF in the BNST. Methods-MaleLong-Evans rats were bilaterally infused with CRF (0.2 or 1.0 nmol) either alone or in combination with the CRF 1 receptor antagonist CP154,526 or the CRF 2 receptor antagonist anti-sauvagine 30 (AS30) prior to behavioral testing in the elevated plus maze or place conditioning paradigms.Results-Intra-BNST administration of CRF produced a dose-dependent reduction in open arm entries and open arm time in the elevated plus maze, indicating an anxiogenic-like effect. These effects were inhibited by co-infusion of CP154,526 but not AS30, indicating that the anxiogeniclike effects of CRF in the BNST are mediated by CRF 1 receptors. Place conditioning with intra-BNST administration of CRF produced a dose-dependent aversion to the CRF-paired environment that was prevented by co-infusion of either CP154,526 or AS30, indicating that both CRF receptor subtypes mediate the aversive effects of this peptide. Intra-BNST infusions of the CRF receptor antagonists alone produced no effects in either behavioral paradigm.Conclusions-CRF 1 receptors in the BNST mediate the anxiogenic-like effects CRF in this region, whereas both CRF 1 and CRF 2 receptor subtypes mediate the conditioned aversive effects of this peptide within the BNST.
Extinction of classically and instrumentally conditioned behaviors, such as conditioned fear and drug-seeking behavior, is a process of active learning, and recent studies indicate that potentiation of glutamatergic transmission facilitates extinction learning. In this study we investigated the effects of the type 5 metabotropic glutamate receptors (mGluR5) positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) on the extinction of cocaine-seeking behavior in rats with a history of intravenous cocaine self-administration. To assess its effects on acquisition and consolidation of extinction learning, CDPPB (60 mg/kg) or vehicle was administered either 20 min prior to, or immediately following, each of 10 extinction sessions, respectively. When administered prior to each extinction session, CDPPB produced a significant reduction in the number of active lever presses on all 10 days of extinction training as compared to vehicle-treated animals. When administered following each extinction session, a significant reduction in the number of active lever presses was observed on the 2nd through 10th day of extinction. Both treatment regimens also reduced the number of extinction training sessions required to meet extinction criteria. Pre- or post-extinction training administration of CDPPB did not alter responding on the inactive lever and had no effects on open field locomotor activity. These data indicate that positive allosteric modulation of mGluR5 receptors facilitates the acquisition and consolidation of extinction learning following cocaine self-administration, and may provide a novel pharmacological approach to enhancing extinction learning when combined with cue exposure therapy for the treatment of cocaine addiction.
Aminopeptidase A (APA) is expressed in glomerular podocytes and tubular epithelia and metabolizes angiotensin II (AngII), a peptide known to promote glomerulosclerosis. In this study, we tested whether APA expression changes in response to progressive nephron loss or whether APA exerts a protective role against glomerular damage and during AngII-mediated hypertensive kidney injury. At advanced stages of FSGS, fawn-hooded hypertensive rat kidneys exhibited distinctly increased APA staining in areas of intact glomerular capillary loops. Moreover, BALB/c APA-knockout (KO) mice injected with a nephrotoxic serum showed persistent glomerular hyalinosis and albuminuria 96 hours after injection, whereas wild-type controls achieved virtually full recovery. We then tested the effect of 4-week infusion of AngII (400 ng/kg per minute) in APA-KO and wild-type mice. Although we observed no significant difference in achieved systolic BP, AngII-treated APA-KO mice developed a significant rise in albuminuria not observed in AngII-treated wild-type mice along with increased segmental and global sclerosis and/or collapse of juxtamedullary glomeruli, microcystic tubular dilation, and tubulointerstitial fibrosis. In parallel, AngII treatment significantly increased the kidney AngII content and attenuated the expression of podocyte nephrin in APA-KO mice but not in wild-type controls. These data show that deficiency of APA increases susceptibility to glomerular injury in BALB/c mice. The augmented AngII-mediated kidney injury observed in association with increased intrarenal AngII accumulation in the absence of APA suggests a protective metabolizing role of APA in AngII-mediated glomerular diseases.
Unopposed angiotensin (Ang) II-mediated cellular effects may lead to progressive glomerulosclerosis. While Ang-II can be locally generated in the kidneys, we previously showed that glomerular podocytes primarily convert Ang-I, the precursor of Ang-II, to Ang-(1-7) and Ang-(2-10), peptides that have been independently implicated in biological actions opposing those of Ang-II. Therefore, we hypothesized that Ang-(1-7) and Ang-(2-10) could be renoprotective in the fawn-hooded hypertensive rat, a model of focal segmental glomerulosclerosis. We evaluated the ability of 8–12 week-long intravenous administration of either Ang-(1-7) or Ang-(2-10) (100–400 ng/kg/min) to reduce glomerular injury in uni-nephrectomized fawn-hooded hypertensive rats, early or late in the disease. Vehicle-treated rats developed hypertension and lesions of focal segmental glomerulosclerosis. No reduction in glomerular damage was observed, as measured by either 24-hour urinary protein excretion or histological examination of glomerulosclerosis, upon Ang-(1-7) or Ang-(2-10) administration, regardless of peptide dose or disease stage. On the contrary, when given at 400 ng/kg/min, both peptides induced a further increase in systolic blood pressure. Content of Ang peptides was measured by parallel reaction monitoring in kidneys harvested at sacrifice. Exogenous administration of Ang-(1-7) and Ang-(2-10) did not lead to a significant increase in their corresponding intrarenal levels. However, the relative abundance of Ang-(1-7) with respect to Ang-II was increased in kidney homogenates of Ang-(1-7)-treated rats. We conclude that chronic intravenous administration of Ang-(1-7) or Ang-(2-10) does not ameliorate glomerular damage in a rat model of focal segmental glomerulosclerosis and may induce a further rise in blood pressure, potentially aggravating glomerular injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.