We have developed an implanted radiofrequency coil to obtain high resolution in vivo MR images at 1.9 Tesla of rat spinal cords that have been injured using a standardized weight drop technique. The signal-to-noise ratio and motion artifact suppression of these images is superior to that achieved in earlier attempts at this field strength using an external surface coil. The high quality and spatial resolution provided by this technique afford the possibility for longitudinal studies of experimental spinal cord injury before and after treatment, as well as detailed correlation of in vivo MRI contrast, histopathological findings, and functional deficit, in a controlled setting.
Luminescent solar concentrators are currently limited in their potential concentration factor and solar conversion efficiency by the inherent escape cone losses present in conventional planar dielectric waveguides. We demonstrate that photonic crystal slab waveguides tailored for luminescent solar concentrator applications can exhibit >90% light trapping efficiency. This is achieved by use of quantum dot luminophores embedded within the waveguide that absorb light at photon energies corresponding to photonic crystal leaky modes that couple to incoming sunlight. The luminophores then emit at lower photon energies into photonic crystal bound modes that enable highly efficient light trapping in slab waveguides of wavelength-scale thickness. Photonic crystal waveguides thus nearly eliminate escape cone losses, and overcome the performance limitations of previously proposed wavelength-selective dielectric multilayer filters. We describe designs for hole-array and rod-array photonic crystals comprised of hydrogenated amorphous silicon carbide using CdSe/CdS quantum dots. Our analysis suggests that photonic crystal waveguide luminescent solar concentrators using these materials these can achieve light trapping efficiency above 92% and a concentration factor as high as 100.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the electrochromic device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (μ-cells) that are i) small enough to be visually transparent to the eye, and ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si μ-cells are arranged in high pitch (i.e. low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance).Additionally, the thin dimensions of these Si μ-cells enable fabrication on flexible substrates to realize these flexible PEC devices. The current work demonstrates this concept using WO 3 as the EC material and V 2 O 5 as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 seconds, with a modulation in transmission as high as 33%. Integration with two Si μ-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 minutes, and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio.
The development of bright, near-infrared-emissive quantum dots (QDs) is a necessary requirement for the realization of important new classes of technology. Specifically, there exist significant needs for brighter, heavy metal-free, near-infrared (NIR) QDs for applications with high radiative efficiency that span diverse applications, including down-conversion emitters for high-performance luminescent solar concentrators. We use a combination of theoretical and experimental approaches to synthesize bright, NIR luminescent InAs/InP/ZnSe QDs and elucidate fundamental material attributes that remain obstacles for development of near-unity NIR QD luminophores. First, using Monte Carlo ray tracing, we identify the atomic and electronic structural attributes of InAs core/shell, NIR emitters, whose luminescence properties can be tailored by synthetic design to match most beneficially those of high-performance, single-band-gap photovoltaic devices based on important semiconductor materials, such Si or GaAs. Second, we synthesize InAs/InP/ZnSe QDs based on the optical attributes found to maximize LSC performance and develop methods to improve the emissive qualities of NIR emitters with large, tunable Stokes ratios, narrow emission linewidths, and high luminescence quantum yields (here reaching 60 ± 2%). Third, we employ atomistic electronic structure calculations to explore charge carrier behavior at the nanoscale affected by interfacial atomic structures and find that significant exciton occupation of the InP shell occurs in most cases despite the InAs/InP type I bulk band alignment. Furthermore, the density of the valence band maximum state extends anisotropically through the (111) crystal planes to the terminal InP surfaces/interfaces, indicating that surface defects, such as unpassivated phosphorus dangling bonds, located on the (111) facets play an outsized role in disrupting the valence band maximum and quenching photoluminescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.