The inferior olive projects climbing fiber axons to cerebellar Purkinje neurons, where they trigger calcium-based dendritic spikes. These responses dynamically shape the immediate spike output of Purkinje cells as well as provide an instructive signal to guide long-term plasticity. Climbing fibers typically fire approximately once a second, and the instructive role is distributed over many such firing events. However, transmission of salient information on an immediate basis needs to occur on a shorter timescale during which a Purkinje cell would typically be activated by a climbing fiber only once. Here we show using in vivo calcium imaging in anesthetized mice and rats that sensory events are rapidly and reliably represented by momentary, simultaneous coactivation of microbands of adjacent Purkinje cells. Microbands were sagittally oriented and spanned up to 100 m mediolaterally, representing hundreds of Purkinje cells distributed over multiple folia. Spontaneous and sensory-evoked microbands followed boundaries that were close or identical to one another and were desynchronized by olivary injection of the gap junction blocker mefloquine, indicating that excitation to the olive is converted to synchronized firing by electrical coupling. One-time activation of microbands could distinguish a sensory response from spontaneous activity with up to 98% accuracy. Given the anatomy of the olivocerebellar system, microband synchrony may shape the output of neurons in the cerebellar nuclei either via powerful inhibition by Purkinje cells or by direct monosynaptic excitation from the inferior olive.
In vivo multiphoton fluorescence microscopy allows imaging of cellular structures in brain tissue to depths of hundreds of micrometers and, when combined with the use of activity-dependent indicator dyes, opens the possibility of observing intact, functioning neural circuitry. We have developed tools for analyzing in vivo multiphoton data sets to identify responding structures and events in single cells as well as patterns of activity within the neural ensemble. Data were analyzed from populations of cerebellar Purkinje cell dendrites, which generate calcium-based complex action potentials. For image segmentation, active dendrites were identified using a correlation-based method to group covarying pixels. Firing events were extracted from dendritic fluorescence signals with a 95% detection rate and an 8% false-positive rate. Because an event that begins in one movie frame is sometimes not detected until the next frame, detection delays were compensated using a likelihood-based correction procedure. To identify groups of dendrites that tended to fire synchronously, a k-means-based procedure was developed to analyze pairwise correlations across the population. Because repeated runs of k-means often generated dissimilar clusterings, the runs were combined to determine a consensus cluster number and composition. This procedure, termed meta-k-means, gave clusterings as good as individual runs of k-means, was independent of random initial seeding, and allowed the exclusion of outliers. Our methods should be generally useful for analyzing multicellular activity recordings in a variety of brain structures.
Objects flashed briefly around the time of a saccadic eye movement are grossly mislocalized by human subjects, so they appear to be compressed toward the endpoint of the saccade. In this study, we investigate spatial localization during saccadic adaptation to examine whether the focus of compression tends toward the intended saccadic target or at the endpoint of the actual (adapted) movement. We report two major results. First, that peri-saccadic focus of the compression did not occur at the site of the initial saccadic target, but tended toward the actual landing site of the saccade. Second, and more surprisingly, we observed a large long-term perceptual distortion of space, lasting for hundreds of milliseconds. This distortion did not occur over the whole visual field but was limited to a local region of visual space around the saccade target, suggesting that saccadic adaptation induces a visuo-topic remapping of space. The results imply that the mechanisms controlling saccadic adaptation also affect perception of space and point to a strong perceptual plasticity coordinated with the well-documented plasticity of the motor system.
ABSTRACT:The conversion of newly formed declarative memories into long-term memories is known to be dependent on the hippocampus. Recent experiments suggest that memory consolidation requires reactivation of the NMDA receptor in CA1 during the initial week(s) after training. This led to the hypothesis that the repeated post-learning reinforcement of synaptic modifications, termed synaptic reentry reinforcement (SRR), is essential for long-term memory consolidation and storage. Based on experimental observations, we have built a computational model to further illustrate and explore the effect of the SRR process on the formation of long-term memory. We show that SRR is capable of strengthening and maintaining memory traces despite inherent variability in the system due to such processes as the turnover of synaptic receptors and their associated signaling and structural proteins. Furthermore, we demonstrate that new rounds of synaptic modification triggered by memory reactivation, either during conscious recall or sleep, could lead to the selective consolidation of a subset of memory traces. Finally, we show why the SRR process in the hippocampus is required during the initial post-training weeks for synaptic reinforcement based memory consolidation in the cortex. Hippocampus 2002;12:637-647.
In addition to ascending, descending, and lateral auditory projections, inputs extrinsic to the auditory system also influence neural processing in the inferior colliculus (IC). These types of inputs often have an important role in signaling salient factors such as behavioral context or internal state. One route for such extrinsic information is through centralized neuromodulatory networks like the serotonergic system. Serotonergic inputs to the IC originate from centralized raphe nuclei, release serotonin in the IC, and activate serotonin receptors expressed by auditory neurons. Different types of serotonin receptors act as parallel pathways regulating specific features of circuitry within the IC. This results from variation in subcellular localizations and effector pathways of different receptors, which consequently influence auditory responses in distinct ways. Serotonin receptors may regulate GABAergic inhibition, influence response gain, alter spike timing, or have effects that are dependent on the level of activity. Serotonin receptor types additionally interact in nonadditive ways to produce distinct combinatorial effects. This array of effects of serotonin is likely to depend on behavioral context, since the levels of serotonin in the IC transiently increase during behavioral events including stressful situations and social interaction. These studies support a broad model of serotonin receptors as a link between behavioral context and reconfiguration of circuitry in the IC, and the resulting possibility that plasticity at the level of specific receptor types could alter the relationship between context and circuit function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.