IPCC predictions for Honduras indicate that temperature will increase by up to 3–6°C and precipitation will decrease by up to 7–13% by the year 2050. To better understand how fern and lycophyte communities might be affected by climate change, we comprehensively surveyed the community compositions of ferns and lycophytes at Celaque National Park, the highest mountain in Honduras. We surveyed a total of 80 20 × 20 m2 plots along an altitudinal gradient of 1249–2844 m a.s.l., identifying all species and estimating their abundances. We recorded a total of 11,098 individuals from 160 species and 61 genera. Community composition was strongly influenced by changes in altitude, precipitation and the abundance of bryophytes (a proxy for air humidity). Of the 160 species, 63 are expected, under a RCP2.6 scenario for the year 2050, to shift their range fully or partially above the maximum altitude of the mountain. Of these, 65.1% are epiphytes. We found that species with narrow altitudinal ranges at high altitudes were more at risk. Our study indicated that conservation efforts should prioritise higher altitudinal sites, focusing particularly on preserving the vulnerable epiphytic fern species, which are likely to be at greater risk.
Humid coastal dune slacks are an endangered habitat in Northwestern Europe. In the UK, dune slacks are currently classified as being in ‘unfavourable’ condition, with projected decrease in England of up to 30% by 2036. Studies in mainland Europe suggest that regional factors (e.g. slack area, age, and isolation) are more important than local factors (e.g. soil, pH, soil nutrient and water status) in driving successional vegetation processes in coastal slacks. However, this has never been tested for the UK, where approximately 14% of European slacks occur. We used previously established survey protocols to test whether regional factors are more important than local factors in UK coastal slacks, along the Sefton Coast in NW England. We found that slack area and slack age were more important than local factors in driving plant community composition and species richness. We also showed that higher levels of management, such as active grazing and invasive shrub and tree removal, are effective in increasing soil moisture levels in slacks. Our results suggest that similar successional processes are likely to be important in slacks in the NW of England, compared to mainland Europe.
Increasing urban expansion has resulted in the decline of many natural and semi-natural communities globally. However, the connectivity and genetic structure of species that survive in these urban landscapes has received little attention, especially with regard to epiphytic plants. The aims of this study were to 1) investigate how an urban landscape can impact the connectivity and genetic structure of Tillandsia recurvata, L., a highly abundant and widely distributed atmospheric epiphyte; to 2) understand what the driving landscape factors are that affects connectivity and structure; and to 3) discuss how urbanisation can affect genetic structure in epiphytes. A total of 288 T. recurvata individuals were sampled across 65 trees throughout the city of Alfenas in South-East Brazil. We designed seven novel microsatellite markers and used four cross-amplified loci to determine the basic genetic structure of T. recurvata. All populations showed high global spatial genetic structure (SGS) and population differentiation. The high SGS of T. recurvata indicated low connectivity between urban populations, with strong evidence to suggest that this was the result of small population size and genetic drift. Pasture trees outside of the urban landscape are likely to be an important source of gene flow to isolated urban epiphyte populations. This study represents an important step towards understanding epiphyte population structure within urban landscapes. Low connectivity across urban landscapes is likely to benefit epiphytes such as T. recurvata due to their adaptability and high tolerance; suggesting a bleak future for many other more sensitive epiphyte species under predicted urbanisation globally.
Increasing urban expansion has resulted in the decline of many natural and seminatural communities globally. However, the connectivity and genetic structure of species that survive in these urban landscapes have received little attention, especially with regard to epiphytic plants. This study aimed to describe and evaluate the connectivity and genetic structure of populations of Tillandsia recurvata, a highly abundant and widely distributed atmospheric epiphyte, amongst urban green spaces within a city. A total of 288 T. recurvata individuals were sampled across 65 trees throughout the city of Alfenas in South-East Brazil. We designed seven novel microsatellite markers and used four cross-amplified loci to determine the basic genetic structure of T. recurvata. All populations showed high global spatial genetic structure, which indicated low connectivity between urban populations. The findings of this study, as well as evidence from previous assessments of T. recurvata genetic structure, suggest that the combined effects of genetic drift, breeding system, and dispersal may have dictated the connectivity of these urban populations. This study represents an important step towards understanding epiphyte population structure within urban landscapes. Low connectivity across urban landscapes is likely to benefit epiphytes such as T. recurvata, due to their adaptability and high tolerance; this suggests a bleak future for many other more sensitive epiphytic species under predicted urbanization globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.