Focused ultrasound combined with bubble-based agents serves as a non-invasive way to open the blood-brain barrier (BBB). Passive acoustic detection was well studied recently to monitor the acoustic emissions induced by the bubbles under ultrasound energy, but the ability to perform reliable BBB opening with a real-time feedback control algorithm has not been fully evaluated. This study focuses on characterizing the acoustic emissions of different types of bubbles: Optison, Definity, and a custom-made nanobubble. Their performance on reliable BBB opening under real-time feedback control based on acoustic detection was evaluated both in-vitro and in-vivo. The experiments were conducted using a 0.5 MHz focused ultrasound transducer with in-vivo focal pressure ranges from 0.1–0.7 MPa. Successful feedback control was achieved with all three agents when combining with infusion injection. Localized opening was confirmed with Evans blue dye leakage. Microscopic images were acquired to review the opening effects. Under similar total gas volume, nanobubble showed a more reliable opening effect compared to Optison and Definity (p < 0.05). The conclusions obtained from this study confirm the possibilities of performing stable opening using a feedback control algorithm combined with infusion injection. It also opens another potential research area of BBB opening using sub-micron bubbles.
Iron oxide nanoparticles with extremely low dimensions have recently been explored as positive (T) contrast agent for magnetic resonance imaging (MRI). However, their small sizes lead to fast renal clearance and limit their use in elongated in vivo tracking or therapy monitoring. In this paper, we present a state of art approach to forming nanoclusters by crosslinking ultrasmall iron oxide nanoparticles with bovine serum albumin. This novel design not only maintains the T performance of the ultrasmall nanoparticles, but also significantly increases their blood circulation times from 15 minutes to over two hours. Our breast tumor model study also exhibited enhanced contrast at tumor sites for more than 24 hours. The ability of maintaining the T performance of the ultrasmall nanoparticles is significant, because previous studies have shown complete T loss or signal decrease upon polymer encapsulation. This design also shows great potential in encapsulating model drug molecules, which will greatly benefit the field of imaging-guided drug delivery.
Recent research efforts about iron oxide nanoparticles has focused on the development of iron oxide-based T contrast agents for magnetic resonance imaging (MRI), such as ultrasmall iron oxide nanospheres (USNPs <4 nm) and ultrathin nanowires (NW, diameter <4 nm). In this paper, we report the cellular uptake behaviors of these two types of ultrasmall scale nanostructures on HepG2 cells. Both these two nanostructures were functionalized with tannic acid and their physical and chemical properties were carefully analyzed before cellular tests. Both USNPs and NWs exhibited strong paramagnetic signals, a property suitable for T MRI contrast agents. The distinct shapes also caused much difference in their cellular uptake behaviors. Specifically, the uptake of USNPs was five times higher than that of NWs after 72 hours incubation. The shape-dependent cellular uptake can potentially lead to different blood circulation times, and subsequently different applications of these two types of ultrasmall nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.