In higher plants, three subfamilies of sucrose nonfermenting-1 (Snf1)-related protein kinases have evolved. While the Snf1-related protein kinase 1 (SnRK1) subfamily has been shown to share pivotal roles with the orthologous yeast Snf1 and mammalian AMP-activated protein kinase in modulating energy and metabolic homeostasis, the functional significance of the two plant-specific subfamilies SnRK2 and SnRK3 in these critical processes is poorly understood. We show here that SnRK2.6, previously identified as crucial in the control of stomatal aperture by abscisic acid (ABA), has a broad expression pattern and participates in the regulation of plant primary metabolism. Inactivation of this gene reduced oil synthesis in Arabidopsis (Arabidopsis thaliana) seeds, whereas its overexpression increased Suc synthesis and fatty acid desaturation in the leaves. Notably, the metabolic alterations in the SnRK2.6 overexpressors were accompanied by amelioration of those physiological processes that require high levels of carbon and energy input, such as plant growth and seed production. However, the mechanisms underlying these functionalities could not be solely attributed to the role of SnRK2.6 as a positive regulator of ABA signaling, although we demonstrate that this kinase confers ABA hypersensitivity during seedling growth. Collectively, our results suggest that SnRK2.6 mediates hormonal and metabolic regulation of plant growth and development and that, besides the SnRK1 kinases, SnRK2.6 is also implicated in the regulation of metabolic homeostasis in plants.Plants are constantly confronted by biotic and abiotic stresses and nutrient deprivation that disrupt metabolic and energy homeostasis or diminish carbon and energy availability for maintaining cell vitality, growth, and proliferation. It is believed that maintaining energy balance and availability at the cellular and organism levels is critical for optimizing plant growth and development. This underscores the cellular and physiological importance of energy sensors that control energy balance through regulating fundamental metabolic pathways in response to nutritional and environmental stresses.At present, a prevailing view is that energy sensors are evolutionarily conserved in eukaryotes, which are represented by Snf1 (for sucrose nonfermenting-1) in yeast, AMPK (for AMP-activated protein kinase) in
In this work, we characterized 2 novel insecticidal proteins; Vip3Ab1 and Vip3Bc1. These proteins display unique insecticidal spectra and have differential rates of processing by lepidopteran digestive enzymes. Furthermore, we have found that both proteins exist as tetramers in their native state before and after proteolysis. In addition, we expressed truncated forms and protein chimeras to gain a deeper understanding of toxin specificity and stability. Our study confirms a role for the C-terminal 65 kDa domain in directing insect specificity. Importantly, these data also indicate a specific interaction between the 20 kDa amino terminus and 65 kDa carboxy terminus, after proteolytic processing. We demonstrate the C-terminal 65 kDa to be labile in native proteolytic conditions in absence of the 20 kDa N-terminus. Thus, the 20 kDa fragment functions to provide stability to the C-terminal domain, which is necessary for lethal toxicity against lepidopteran insects.
The prevalence and societal impact of opioid use disorder (OUD) is an acknowledged public health crisis that is further aggravated by the current pandemic. One of the devastating consequences of OUD is opioid overdose deaths. While multiple medications are now available to treat OUD, given the prevalence and societal burden, additional well-tolerated and effective therapies are still needed. To this point, we have developed chimeric monoclonal antibodies (mAb) that will specifically complex with fentanyl and its analogs in the periphery, thereby preventing them from reaching the central nervous system. Additionally, mAb-based passive immunotherapy offers a high degree of specificity to drugs of abuse and does not interfere with an individual’s ability to use any of the medications used to treat OUD. We hypothesized that sequestering fentanyl and its analogs in the periphery will mitigate their negative effects on the brain and peripheral organs. This study is the first report of chimeric mAb against fentanyl and its analogs. We have discovered, engineered the chimeric versions, and identified the selectivity of these antibodies, through in vitro characterization and in vivo animal challenge studies. Two mAb candidates with very high (0.1–1.3 nM) binding affinities to fentanyl and its analogs were found to be effective in engaging fentanyl in the periphery and blocking its effects in challenged animals. Results presented in this work constitute a major contribution in the field of novel therapeutics targeting OUD.
BackgroundAvailability of well characterized maize regulatory elements for gene expression in a variety of tissues and developmental stages provides effective alternatives for single and multigene transgenic concepts. We studied the expression of the herbicide tolerance gene aryloxyalkanoate dioxygenase (aad-1) driven by seven different regulatory element construct designs including the ubiquitin promoters of maize and rice, the actin promoters of melon and rice, three different versions of the Sugarcane Bacilliform Badnavirus promoters in association with other regulatory elements of gene expression.ResultsGene expression of aad-1 was characterized at the transcript and protein levels in a collection of maize tissues and developmental stages. Protein activity against its target herbicide was characterized by herbicide dosage response. Although differences in transcript and protein accumulation were observed among the different constructs tested, all events were tolerant to commercially relevant rates of quizalafop-P-ethyl compared to non-traited maize under greenhouse conditions.DiscussionThe data reported demonstrate how different regulatory elements affect transcript and protein accumulation and how these molecular characteristics translate into the level of herbicide tolerance. The level of transcript detected did not reflect the amount of protein quantified in a particular tissue since protein accumulation may be influenced not only by levels of transcript produced but also by translation rate, post-translational regulation mechanisms and protein stability. The amount of AAD-1 enzyme produced with all constructs tested showed sufficient enzymatic activity to detoxify the herbicide and prevent most herbicidal damage at field-relevant levels without having a negative effect on plant health.ConclusionsDistinctive profiles of aad-1 transcript and protein accumulation were observed when different regulatory elements were utilized in the constructs under study. The ZmUbi and the SCBV constructs showed the most consistent robust tolerance, while the melon actin construct provided the lowest level of tolerance compared to the other regulatory elements used in this study. These data provide insights into the effects of differing levels of gene expression and how these molecular characteristics translate into the level of herbicide tolerance. Furthermore, these data provide valuable information to optimize future designs of single and multiple gene constructs for maize research and crop improvement.Electronic supplementary materialThe online version of this article (doi: 10.1186/s12870-018-1227-3) contains supplementary material, which is available to authorized users.
Vegetative insecticidal proteins (Vips) from Bacillus thuringiensis (Bt) are unique from crystal (Cry) proteins found in Bt parasporal inclusions as they are secreted during the bacterial vegetative growth phase and bind unique receptors to exert their insecticidal effects. We previously demonstrated that large modifications of the Vip3 C-terminus could redirect insecticidal spectrum but results in an unstable protein with no lethal activity. In the present work, we have generated a new Vip3 protein, Vip3Ab1-740, via modest modification of the Vip3Ab1 C-terminus. Vip3Ab1-740 is readily processed by midgut fluid enzymes and has lethal activity towards Spodoptera eridania, which is not observed with the Vip3Ab1 parent protein. Importantly, Vip3Ab1-740 does retain the lethal activity of Vip3Ab1 against other important lepidopteran pests. Furthermore, transgenic plants expressing Vip3Ab1-740 are protected against S. eridania, Spodoptera frugiperda, Helicoverpa zea, and Pseudoplusia includens. Thus, these studies demonstrate successful engineering of Vip3 proteins at the C-terminus to broaden insecticidal spectrum, which can be employed for functional expression in planta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.