Although there is a large body of research on food webs in rocky intertidal communities, most of the emphasis has been on the marine benthic components. Effects of avian predation on highly mobile predators such as crabs, remains practically unstudied in rocky shore ecosystems. The crab, Cancer borealis, is an important component of the diet of gulls (Larus marinus, L. argentatus) at the Isles of Shoals, Maine, USA. C. borealis prey include the predatory gastropod Nucella lapillus L., the herbivore Littorina littorea, and mussels Mytilus edulis L. We hypothesized that gulls reduce abundance of C. borealis in the low intertidal and shallow subtidal, thereby allowing C. borealis prey to persist in high numbers. A study of crab tidal migration showed that C. borealis density nearly doubled at high tide compared to low tide; thus, crabs from a large subtidal source population migrate into the intertidal zone during high tides and either emigrate or are removed by gulls during low tides. Results from a small-scale (1 m2) predator caging experiment in the low intertidal zone indicated that enclosed crabs significantly reduced L. littorea abundance when protected from gull predation. In a much larger-scale gull exclusion experiment, densities of C. borealis increased significantly during low and high tides in exclosures relative to the controls. C. borealis density was inversely correlated with changes in the abundance of two mesopredators Carcinus maenas and Nucella lapillus, and with the space-occupier M. edulis. There was a similar negative correlation between abundance of C. borealis and the change in abundance of the herbivore L. littorea, but the trend was not significant. Mortality of tethered L. littorea was associated with C. borealis density across sites. However, preferred algae did not change in response to L. littorea density during the experiment. Thus, we found suggestive, but not conclusive, evidence for a three-level cascade involving gulls, crabs, and L. littorea. Our studies strongly suggest that gulls, as apex predators, generate three-level trophic cascades in rocky intertidal food webs by preventing the highly mobile subtidal predator, C. borealis, from establishing substantial populations in the low-mid intertidal zone thereby indirectly enhancing densities of two key mesopredators (N. lapillus, Carcinus) and blue mussels (M. edulis).
Our findings show a low prevalence of asthma in children, a high prevalence of respiratory symptoms and low levels of lung function in remote Aboriginal communities. The greater prevalence of respiratory morbidity in the desert community was not explained by diagnosed asthma, airway hyperresponsiveness or cigarette smoking. The role of infection requires further investigation. The results suggest that the lower lung function observed in Aboriginal communities (compared with non-Aboriginal communities) results at least partly from environmental factors.
BackgroundObese children with asthma are more vulnerable to air pollution, especially fine particulate matter (PM2.5), but reasons are poorly understood. We hypothesised that differences in breathing patterns (tidal volume, respiratory rate, and minute ventilation) due to elevated body mass index (BMI) may contribute to this finding.ObjectiveTo investigate the association of BMI with breathing patterns and deposition of inhaled PM2.5.MethodsBaseline data from a prospective study of children with asthma was analysed (n=174). Tidal breathing was measured by a pitot-tube flowmeter, from which tidal volume, respiratory rate, and minute ventilation were obtained. The association of BMI z-score with breathing patterns was estimated in a multivariable model adjusted for age, height, race, sex, and asthma severity. A particle dosimetry model simulated PM2.5 lung deposition based on BMI-associated changes in breathing patterns.ResultsHigher BMI was associated with higher tidal volume (adjusted mean difference [aMD] between obese and normal-range BMI of 25 mL, 95% confidence interval [CI] 5–45 mL) and minute ventilation (aMD 453 mL·min−1, 95%CI 123–784 mL·min−1). Higher tidal volumes caused higher fractional deposition of PM2.5 in the lung, driven by greater alveolar deposition. This translated into obese participants having greater per-breath retention of inhaled PM2.5 (aMD in alveolar deposition fraction of 3.4%; 95% CI 1.3–5.5%), leading to worse PM2.5 deposition rates.ConclusionsObese children with asthma breathe at higher tidal volumes that may increase the efficiency of PM2.5 deposition in the lung. This finding may partially explain why obese children with asthma exhibit greater sensitivity to air pollution.
Children spend the majority of their time indoors, and a substantial portion of this time in the school environment. Air pollution has been shown to adversely impact lung development and has effects that extend beyond respiratory health. The goal of this study was to evaluate the indoor environment in public schools in the context of an ongoing urban renovation program to investigate the impact of school building renovation and replacement on indoor air quality. Indoor air quality (CO2, PM2.5, CO, and temperature) was assessed for two weeks during fall, winter, and spring seasons in 29 urban public schools between December 2015 and March 2020. Seven schools had pre- and post-renovation data available. Linear mixed models were used to examine changes in air quality outcomes by renovation status in the seven schools with pre- and post-renovation data. Prior to renovation, indoor CO measurements were within World Health Organization (WHO) guidelines, and indoor PM2.5 measurements rarely exceeded them. Within the seven schools with pre- and post-renovation data, over 30% of indoor CO2 measurements and over 50% of indoor temperatures exceeded recommended guidelines from the American Society of Heating, Refrigerating, and Air Conditioning Engineers. Following renovation, 10% of indoor CO2 measurements and 28% of indoor temperatures fell outside of the recommended ranges. Linear mixed models showed significant improvement in CO2, indoor PM2.5, and CO following school renovation. Even among schools that generally met recommendations on key guidelines, school renovation improved the indoor air quality. Our findings suggest that school renovation may benefit communities of children, particularly those in low-income areas with aging school infrastructure, through improvements in the indoor environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.