The ability to inexpensively monitor indoor air speed and direction on a continuous basis would transform the control of environmental quality and energy use in buildings. Air motion transports energy, ventilation air, and pollutants around building interiors and their occupants, and measured feedback about it could be used in numerous ways to improve building operation. However indoor air movement is rarely monitored because of the expense and fragility of sensors. This paper describes a unique anemometer developed by the authors, that measures 3-dimensional air velocity for indoor environmental applications, leveraging new microelectromechanical systems (MEMS) technology for ultrasonic range-finding. The anemometer uses a tetrahedral arrangement of four transceivers, the smallest number able to capture a 3dimensional flow, that provides greater measurement redundancy than in existing anemometry. We describe the theory, hardware, and software of the anemometer, including algorithms that detect and eliminate shielding errors caused by the wakes from anemometer support struts. The anemometer has a resolution and starting threshold of 0.01m/s, an absolute air speed error of 0.05 m/s at a given orientation with minimal filtering, 3.1° angle-and 0.11m/s velocity errors over 360° azimuthal rotation, and 3.5° angle-and 0.07m/s velocity errors over 135° vertical declination. It includes radio connection to internet and is able to operate standalone for multiple years on a standard battery. The anemometer also measures temperature and has a compass and tilt sensor so that flow direction is globally referenced regardless of anemometer orientation. The retail cost of parts is $100 USD, and all parts snap together for ease of assembly.
Indoor air movement affects many functions of buildings, including ventilation and air quality, comfort and health of occupants, fire safety, and building energy use. Accurately measuring air movement has been difficult and expensive over extended periods of time, especially for velocities below 1 m/s. A new type of high frequency ultrasonic transceiver provides high sensitivity measurements and low cost through microelectromechanical systems (MEMS) manufacturing. However, at high frequencies, conventional ultrasonic signal processing algorithms function only over small ranges of ambient temperature and velocity. In this paper, we describe three algorithms that use the complex phase angle of an ultrasonic pulse to measure velocity and temperature over extended ranges of temperature and velocity. They employ heuristics to track the vibration cycle of the measured phase angle. These methods are applied in a pulse-based anemometer whose 176kHz MEMS transceivers both transmit and receive. In wind tunnel tests between 0-4 m/s, the tracking algorithm with a low-pass filter measured air speed with high sensitivity and accuracy (0.026 m/s mean absolute error). The ability to monitor to this accuracy with such low power draw and low cost is currently unprecedented in the industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.