To investigate the mechanism of hypoxic pulmonary vasodilation we measured isometric tension in rings from ferret third- to fifth-generation intrapulmonary arteries mounted in organ baths (37 degrees C, 28% O2-5% CO2). After precontraction with phenylephrine (PE), hypoxia caused a brief transient vasoconstriction followed by marked vasodilation. Endothelial denudation did not affect the steady-state response. In vessels without endothelium, inhibition of cyclooxygenase and nitric oxide synthase had no effect on the response to hypoxia. Inhibition of ATP-dependent K+ channels (KATP) with glibenclamide, linogliride, or tolbutamide had no effect on normoxic tone before PE or the vasoconstrictor response to PE but inhibited hypoxic vasodilation. Inhibition of Ca(2+)-activated K+ (KCa) channels with charybdotoxin potentiated the vasoconstrictor response to PE but had no effect on hypoxic vasodilation. The nonspecific K(+)-channel inhibitor tetraethyl-ammonium (TEA) potentiated the response to PE and inhibited hypoxic vasodilation. Glibenclamide plus TEA inhibited hypoxic vasodilation more than either agent alone, suggesting that TEA inhibited the KATP-channel independent vasodilation. These results suggest that in isolated ferret pulmonary arteries hypoxia causes vasodilation partially by activating smooth muscle KATP channels. Activation of a TEA-sensitive channel that is not a KATP or KCa channel may also contribute to hypoxic vasodilation.
The majority of veterans with PAD received lipid-lowering medication and achieve goal LDL, but they are more likely to do so if they are older than 70 and have a history of CAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.