Corepressors are proteins that cannot bind DNA directly but repress transcription by interacting with partner proteins. The Groucho/Transducin-Like Enhancer of Split (TLE) are a conserved family of corepressor proteins present in animals ranging from invertebrates such as Drosophila to vertebrates such as mice and humans. Groucho/TLE proteins perform important functions throughout the life span of animals, interacting with several pathways and regulating fundamental processes such as metabolism. However, these proteins have especially crucial functions in animal development, where they are required in multiple tissues in a temporally regulated manner. In this review, we summarize the functions of the Groucho/TLE proteins during animal development, emphasizing on specific tissues where they play essential roles. V C 2015 IUBMB Life, 67 (7): [472][473][474][475][476][477][478][479][480][481] 2015
Myosin heavy chain-embryonic (MyHC-emb) is a skeletal musclespecific contractile protein expressed during muscle development. Mutations in MYH3, the gene encoding MyHC-emb, lead to Freeman-Sheldon and Sheldon-Hall congenital contracture syndromes. Here, we characterize the role of MyHC-emb during mammalian development using targeted mouse alleles. Germline loss of MyHC-emb leads to neonatal and postnatal alterations in muscle fiber size, fiber number, fiber type and misregulation of genes involved in muscle differentiation. Deletion of Myh3 during embryonic myogenesis leads to the depletion of the myogenic progenitor cell pool and an increase in the myoblast pool, whereas fetal myogenesis-specific deletion of Myh3 causes the depletion of both myogenic progenitor and myoblast pools. We reveal that the non-cell-autonomous effect of MyHC-emb on myogenic progenitors and myoblasts is mediated by the fibroblast growth factor (FGF) signaling pathway, and exogenous FGF rescues the myogenic differentiation defects upon loss of MyHC-emb function in vitro. Adult Myh3 null mice exhibit scoliosis, a characteristic phenotype exhibited by individuals with Freeman-Sheldon and Sheldon-Hall congenital contracture syndrome. Thus, we have identified MyHC-emb as a crucial myogenic regulator during development, performing dual cell-autonomous and non-cell-autonomous functions. This article has an associated 'The people behind the papers' interview.
During 2015-2017, chikungunya virus (CHIKV) showed a resurgence in several parts of India with Karnataka, Maharashtra and New Delhi accounting for a majority of the cases. E2-E1 gene based characterization revealed Indian subcontinent sublineage strains possessing Aedes aegypti mosquito-adaptive mutations E1: K211E and E2:V264A, with the 211 site positively selected. Novel mutational sites E1: K16E/Q, E1: K132Q/T, E1: S355T, E2: C19R and E2:S185Y could be associated with epitopes or virulence determining domains. The study examines the role of host, vector and viral factors and fills gaps in our molecular epidemiology data for these regions which are known to possess a dynamic population.
Muscle stem (satellite) cells express Pax7, a key transcription factor essential for satellite cell maintenance and adult muscle regeneration. We identify the corepressor Transducin-Like Enhancer of Split-4 (TLE4) as a Pax7 interaction partner expressed in quiescent satellite cells under homeostasis. A subset of satellite cells transiently downregulate TLE4 during early time points following injury. We identify these to be activated satellite cells where TLE4 downregulation is required for Myf5 activation and myogenic commitment. Our results indicate that TLE4 represses Pax7-mediated Myf5 transcriptional activation by occupying the -111 kb Myf5 enhancer to maintain quiescence. Loss of TLE4 function causes Myf5 upregulation, increase in satellite cell numbers, and altered differentiation dynamics during regeneration. Thus, we have uncovered a novel mechanism to maintain satellite cell quiescence and regulating muscle differentiation mediated by the corepressor TLE4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.