Moving Target Defense (MTD) has emerged as a key technique in various security applications as it takes away the attacker's ability to perform reconnaissance for exploiting a system's vulnerabilities. However, most of the existing research in the field assumes unrealistic access to information about the attacker's motivations and/or actions when developing MTD strategies. Many of the existing approaches also assume complete knowledge regarding the vulnerabilities of a system and how each of these vulnerabilities can be exploited by an attacker. In this work, we aim to create algorithms that generate effective Moving Target Defense strategies that do not rely on prior knowledge about the attackers. Our work assumes that the only way the defender receives information about its own reward is via interaction with the attacker in a repeated game setting. Depending on the amount of information that can be obtained from the interactions, we devise two different algorithms using multi-armed bandit formulation to identify efficient strategies. We then evaluate our algorithms using data mined from the National Vulnerability Database to showcase that they match the performance of the state-of-the-art techniques, despite using a lot less amount of information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.