Accurate medical Augmented Reality (AR) rendering requires two calibrations, a camera intrinsic matrix estimation and a hand-eye transformation. We present a unified, practical, marker-less, real-time system to estimate both these transformations during surgery. For camera calibration we perform calibrations at multiple distances from the endoscope, pre-operatively, to parametrize the camera intrinsic matrix as a function of distance from the endoscope. Then, we retrieve the camera parameters intra-operatively by estimating the distance of the surgical site from the endoscope in less than 1 s. Unlike in prior work, our method does not require the endoscope to be taken out of the patient; for the hand-eye calibration, as opposed to conventional methods that require the identification of a marker, we make use of a rendered tool-tip in 3D. As the surgeon moves the instrument and observes the offset between the actual and the rendered tool-tip, they can select points of high visual error and manually bring the instrument tip to match the virtual rendered tool tip. To evaluate the handeye calibration, 5 subjects carried out the hand-eye calibration procedure on a da Vinci robot. Average Target Registration Error of approximately 7mm was achieved with just three data points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.