Most evidence for hybrid swarm formation stemming from anthropogenic habitat disturbance comes from the breakdown of reproductive isolation between incipient species, or introgression between allopatric species following secondary contact. Human impacts on hybridization between divergent species that naturally occur in sympatry have received considerably less attention. Theory predicts that reinforcement should act to preserve reproductive isolation under such circumstances, potentially making reproductive barriers resistant to human habitat alteration. Using 15 microsatellites, we examined hybridization between sympatric populations of alewife (Alosa pseudoharengus) and blueback herring (A. aestivalis) to test whether the frequency of hybridization and pattern of introgression have been impacted by the construction of a dam that isolated formerly anadromous populations of both species in a landlocked freshwater reservoir. The frequency of hybridization and pattern of introgression differed markedly between anadromous and landlocked populations. The rangewide frequency of hybridization among anadromous populations was generally 0-8%, whereas all landlocked individuals were hybrids. Although neutral introgression was observed among anadromous hybrids, directional introgression leading to increased prevalence of alewife genotypes was detected among landlocked hybrids. We demonstrate that habitat alteration can lead to hybrid swarm formation between divergent species that naturally occur sympatrically, and provide empirical evidence that reinforcement does not always sustain reproductive isolation under such circumstances.
Captive-breeding programs can be implemented to preserve the genetic diversity of endangered populations such that the controlled release of captive-bred individuals into the wild may promote recovery. A common difficulty, however, is that programs are founded with limited wild broodstock, and inbreeding can become increasingly difficult to avoid with successive generations in captivity. Program managers must choose between maintaining the genetic purity of populations, at the risk of inbreeding depression, or interbreeding populations, at the risk of outbreeding depression. We evaluate these relative risks in a captive-breeding program for 3 endangered populations of Atlantic salmon (Salmo salar). In each of 2 years, we released juvenile F(1) and F(2) interpopulation hybrids, backcrosses, as well as inbred and noninbred within-population crosstypes into 9 wild streams. Juvenile size and survival was quantified in each year. Few crosstype effects were observed, but interestingly, the relative fitness consequences of inbreeding and outbreeding varied from year to year. Temporal variation in environmental quality might have driven some of these annual differences, by exacerbating the importance of maternal effects on juvenile fitness in a year of low environmental quality and by affecting the severity of inbreeding depression differently in different years. Nonetheless, inbreeding was more consistently associated with a negative effect on fitness, whereas the consequences of outbreeding were less predictable. Considering the challenges associated with a sound risk assessment in the wild and given that the effect of inbreeding on fitness is relatively predictable, we suggest that risk can be weighted more strongly in terms of the probable outcome of outbreeding. Factors such as genetic similarities between populations and the number of generations in isolation can sometimes be used to assess outbreeding risk, in lieu of experimentation.
Characterizing the nature of genetic differentiation among individuals and populations and its distribution across the genome is increasingly important to inform both conservation and management of exploited species. Atlantic Halibut (Hippoglossus hippoglossus) is an ecologically and commercially important fish species, yet knowledge of population structure and genomic diversity in this species remains lacking. Here, we use restriction-site associated DNA sequencing and a chromosome-level genome assembly to identify over 86 000 single nucleotide polymorphisms mapped to 24 chromosome-sized scaffolds, genotyped in 734 individuals across the Northwest Atlantic. We describe subtle but significant genome-wide regional structuring between the Gulf of St. Lawrence and adjacent Atlantic continental shelf. However, the majority of genetic divergence is associated with a large putative chromosomal rearrangement (5.74 megabases) displaying high differentiation and linkage disequilibrium, but no evidence of geographic variation. Demographic reconstructions suggest periods of expansion coinciding with glacial retreat, and more recent declines in Ne. This work highlights the utility of genomic data to identify multiple sources of genetic structure and genomic diversity in commercially exploited marine species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.