N, not NHC: A neutral, basic, strong sigma-donor nitrogen ancillary ligand with properties analogous to those of N-heterocyclic carbenes (NHCs) was developed to aid in the oxidative additions of challenging substrates to late transition metals. Selective, room-temperature C-F bond activation was observed with hexa-, penta-, and all three isomers of tetrafluorobenzene using a nickel(0) source in the presence of this donor.
The ubiquitous Stille coupling reaction utilizes Sn-C bonds and is of great utility to organic chemists. Unlike the B-C bonds used in the Miyaura-Suzuki coupling reaction, which are readily obtained via direct borylation of C-H bonds, routes to organotin compounds via direct C-H bond functionalization are lacking. Here we report that the nickel-catalyzed reaction of fluorinated arenes and pyridines with vinyl stannanes does not provide the expected vinyl compounds via C-F activation but rather provides new Sn-C bonds via C-H functionalization with the loss of ethylene. This mechanism provides a new unanticipated methodology for the direct conversion of C-H bonds to carbon-heteroatom bonds.
The known aryne complex (PEt3)2Ni(eta2-C6H2-4,5-F2) (1a) reacts with a catalytic amount of Br2Ni(PEt3)2 over 1% Na/Hg to afford the dinuclear Ni(I) biarylyl complex [(PEt3)2Ni]2(mu-eta1:eta1-3,4-F2C6H2-3',4'-F2C6H2) (2a), which results from a combination of C-C bond formation and C-H bond rearrangement. The dinuclear benzyne [(PEt3)2Ni]2(mu-eta2:eta2-C6H2-4,5-F2) (3) was obtained by the reaction of 1a with a stoichiometric amount of Br2Ni(PEt3)2 over excess 1% Na/Hg, and 3 was found to catalyze the conversion of 1a to 2a. The reaction of 1a with B(C6F5)3 produced the trinuclear complex (PEt3)3Ni3(mu3:eta1:eta1:eta2-4,5-F2C6H2)(mu3:eta1:eta1:eta2-4,5-F2C6H2-4',5'-F2C6H2) (6). The addition of PEt3 to 6 produced 1 equiv of 1a and 1 equiv of [(PEt3)2Ni]2(mu-eta1:eta1-4,5-F2C6H2-4',5'-F2C6H2) (7a). Both 6 and 7a were identified as intermediates in the conversion of 1a to 2a. The analogue [(PEt3)(PMe3)Ni]2(mu-eta1:eta1-4,5-F2C6H2-4',5'-F2C6H2) (7b) was prepared by the addition of PMe3 to 6 and was structurally characterized. NMR spectroscopic evidence identified the additional asymmetric biarylyl [(PEt3)2Ni]2(mu-eta1:eta1-4,5-F2C6H2-3',4'-F2C6H2) (8a) during the conversion of 1a to 2a. The initial observation of 2 equiv of 8a for every equivalent of 2a produced from solutions of 7a suggests that 8a and 2a are formed from a common intermediate. A crossover labeling experiment shows that the C-H bond rearrangement steps in the conversion of 1a to 2a occur with the intermolecular scrambling of hydrogen and deuterium labels. The evidence collected suggests that Ni(I) complexes are capable of activating aromatic C-H bonds.
A tripodal amido ligand with a central non-chelating phosphorus donor allows for the facile assembly of a pentane soluble organometallic copper cluster with a central copper atom surrounded by a nonplanar chain of eight copper atoms and two terminal amido-copper bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.