Spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (BTK) play critical roles in platelet physiology, facilitating ITAM-mediated signaling downstream of platelet glycoprotein VI (GPVI) and GPIIb/IIIa receptors. Small molecule tyrosine kinase inhibitors (TKIs) targeting Syk and BTK have been developed as anti-neoplastic and anti-inflammatory therapeutics and have also gained interest as anti-platelet agents. Here, we investigate the effects of 12 different Syk and BTK inhibitors on GPVI-mediated platelet signaling and function. These inhibitors include, four Syk inhibitors, Bay 61-3606, R406 (fostamatinib), entospletinib, TAK-659, four irreversible BTK inhibitors, ibrutinib, acalabrutinib, ONO-4059 (tirabrutinib), AVL-292 (spebrutinib), and four reversible BTK inhibitors, CG-806, BMS-935177, BMS-986195, and fenebrutinib. In vitro, TKIs targeting Syk or BTK reduced platelet adhesion to collagen, dense granule secretion, and alpha granule secretion in response to the GPVI agonist CRP-XL. Similarly, these TKIs reduced the percentage of activated integrin αIIbβ3 on the platelet surface in response to CRP-XL, as determined by PAC-1 binding. While all TKIs tested inhibited PLCγ2 phosphorylation following GPVI-mediated activation, other downstream signaling events proximal to PI3K and PKC were differentially affected. In addition, reversible BTK inhibitors had less pronounced effects on GPIIb/IIIa-mediated platelet spreading on fibrinogen and differentially altered the organization of PI3K around microtubules during platelets spreading on fibrinogen. Select TKIs also inhibited platelet aggregate formation on collagen under physiological flow conditions. Together, our results suggest that TKIs targeting Syk or BTK inhibit central platelet functional responses but may differentially affect protein activities and organization in critical systems downstream of Syk and BTK in platelets.