Borrelia burgdorferi, the causative agent of Lyme disease in humans, is exposed to reactive oxygen and nitrogen species (ROS and RNS) in both the tick vector and vertebrate reservoir hosts. B. burgdorferi contains a limited repertoire of canonical oxidative stress response genes, suggesting that novel gene functions may be important for protection of B. burgdorferi against ROS or RNS exposure. Here, we use transposon insertion sequencing (Tn-seq) to conduct an unbiased search for genes involved in resistance to nitric oxide, hydrogen peroxide, and tertiary-butyl hydroperoxide in vitro. The screens identified 66 genes whose disruption resulted in increased susceptibility to at least one of the stressors. These genes include previously characterized mediators of ROS and RNS resistance (including components of the nucleotide excision repair pathway and a subunit of a riboflavin transporter), as well as novel putative resistance candidates. DNA repair mutants were among the most sensitive to RNS in the Tn-seq screen, and survival assays with individual Tn mutants confirmed that the putative ribonuclease BB0839 is involved in resistance to nitric oxide. In contrast, mutants lacking predicted inner membrane proteins or transporters were among the most sensitive to ROS, and the contribution of three such membrane proteins (BB0017, BB0164, and BB0202) to ROS sensitivity was confirmed using individual Tn mutants and complemented strains. Further analysis showed that levels of intracellular manganese are significantly reduced in the Tn::bb0164 mutant, identifying a novel role for BB0164 in B. burgdorferi manganese homeostasis. Infection of C57BL/6 and gp91phox-/- mice with a mini-library of 39 Tn mutants showed that many of the genes identified in the in vitro screens are required for infectivity in mice. Collectively, our data provide insight into how B. burgdorferi responds to ROS and RNS and suggests that this response is relevant to the in vivo success of the organism.
The type 3 secretion system (T3SS) genes of Vibrio harveyi are activated at low cell density and repressed at high cell density by quorum sensing (QS). Repression requires LuxR, the master transcriptional regulator of QS-controlled genes. Here, we determine the mechanism underlying the LuxR repression of the T3SS system. Using a fluorescence-based cell sorting approach, we isolated V. harveyi mutants that are unable to express T3SS genes at low cell density and identified two mutations in the V. harveyi exsBA operon. While LuxR directly represses the expression of exsBA, complementation and epistasis analyses reveal that it is the repression of exsA expression, but not exsB expression, that is responsible for the QS-mediated repression of T3SS genes at high cell density. The present work further defines the genes in the V. harveyi QS regulon and elucidates a mechanism demonstrating how multiple regulators can be linked in series to direct the expression of QS target genes specifically at low or high cell density.
Eighty percent of Neisseria gonorrhoeae strains and some Neisseria meningitidis strains encode a 57-kb gonococcal genetic island (GGI). The GGI was horizontally acquired and is inserted in the chromosome at the replication terminus. The GGI is flanked by direct repeats, and site-specific recombination at these sites results in excision of the GGI and may be responsible for its original acquisition. Although the role of the GGI in N. meningitidis is unclear, the GGI in N. gonorrhoeae encodes a type IV secretion system (T4SS). T4SS are versatile multi-protein complexes and include both conjugation systems as well as effector systems that translocate either proteins or DNA–protein complexes. In N. gonorrhoeae , the T4SS secretes single-stranded chromosomal DNA into the extracellular milieu in a contact-independent manner. Importantly, the DNA secreted through the T4SS is effective in natural transformation and therefore contributes to the spread of genetic information through Neisseria populations. Mutagenesis experiments have identified genes for DNA secretion including those encoding putative structural components of the apparatus, peptidoglycanases which may act in assembly, and relaxosome components for processing the DNA and delivering it to the apparatus. The T4SS may also play a role in infection by N. gonorrhoeae . During intracellular infection, N. gonorrhoeae requires the Ton complex for iron acquisition and survival. However, N. gonorrhoeae strains that do not express the Ton complex can survive intracellularly if they express structural components of the T4SS. These data provide evidence that the T4SS is expressed during intracellular infection and suggest that the T4SS may provide an advantage for intracellular survival. Here we review our current understanding of how the GGI and type IV secretion affect natural transformation and pathogenesis in N. gonorrhoeae and N. meningitidis .
b Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the medium, and this DNA is effective in transforming other gonococci via natural transformation. In addition, the T4SS is important in the initial stages of biofilm development and mediates intracellular iron uptake in the absence of TonB. To better understand the mechanism of type IV secretion in N. gonorrhoeae, we examined the expression levels and localization of two predicted T4SS outer membrane proteins, TraK and TraB, in the wild-type strain as well as in overexpression strains and in a strain lacking all of the T4SS proteins. Despite very low sequence similarity to known homologues, TraB (VirB10 homolog) and TraK (VirB9 homolog) localized similarly to related proteins in other systems. Additionally, we found that TraV (a VirB7 homolog) interacts with TraK, as in other T4SSs. However, unlike in other systems, neither TraK nor TraB required the presence of other T4SS components for proper localization. Unlike other gonococcal T4SS proteins we have investigated, protein levels of the outer membrane proteins TraK and TraB were extremely low in wild-type cells and were undetectable by Western blotting unless overexpressed or tagged with a FLAG3 triple-epitope tag. Localization of TraK-FLAG3 in otherwise wild-type cells using immunogold electron microscopy of thin sections revealed a single gold particle on some cells. These results suggest that the gonococcal T4SS may be present in single copy per cell and that small amounts of T4SS proteins TraK and TraB are sufficient for DNA secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.