Passive flux meters (PFMs) have become invaluable tools for site characterization and evaluation of remediation performance at groundwater contaminated sites. To date, PFMs technology has been demonstrated in the field to measure midrange hydrophobic contaminants (e.g., chlorinated ethenes, fuel hydrocarbons, perchlorate) and inorganic ions (e.g., uranium and nitrate). However, flux measurements of low partitioning contaminants (e.g., 1,4-dioxane, hexahydro-1,3,5-trinitro-s-triazine (RDX)) and reactive ions-species (e.g., sulfate (SO42−), Chromium(VI) (Cr(VI)) are still challenging because of their low retardation during transport and quick transformation under highly reducing conditions, respectively. This study is the first application of PFMs for in-situ mass flux measurements of 1,4-dioxane, RDX, Cr(VI) and SO42− reduction rates. Laboratory experiments were performed to model kinetic uptake rates and extraction efficiency for sorbent selections. Silver impregnated granular activated carbon (GAC) was selected for the capture of 1,4-dioxane and RDX, whereas Purolite 300A (Bala Cynwyd, PA, USA) was selected for Cr(VI) and SO42−. PFM field demonstrations measured 1,4-dioxane fluxes ranging from 13.3 to 55.9 mg/m2/day, an RDX flux of 4.9 mg/m2/day, Cr(VI) fluxes ranging from 2.3 to 2.8 mg/m2/day and SO42− consumption rates ranging from 20 to 100 mg/L/day. This data suggests other low-partitioning contaminates and reactive ion-species could be monitored using the PFM.
Passive flux meters (PFMs) have become invaluable tools for site characterization and evaluation of remediation performance at groundwater contaminated sites. To date, PFMs technology has been demonstrated in the field to measure low - to midrange hydrophobic contaminants (e.g., chlorinated ethenes, fuel hydrocarbons, perchlorate) and inorganic ions (e.g., uranium and nitrate). However, flux measurements of a low partitioning contaminant (e.g., 1,4-dioxane, hexahydro-1,3,5-trinitro-s-triazine (RDX)) and reactive ions-species (e.g., sulfate (SO42-), Chromium(VI) (Cr(VI)) are still challenging because of their low retardation during transport and quick transformation under highly reducing conditions, respectively. This study comprises the first application of PFMs for the in-situ mass flux measurements of 1,4-Dioxane, RDX, Cr(VI) and SO42- reduction rates. Laboratory experiments were performed to model kinetic uptake rates and extraction efficiency for sorbent selections. Silver impregnated granular activated carbon (GAC) was selected for capture of 1,4-Dioxane and RDX, whereas Purolite 300A was selected for chromium and SO42-. PFM field demonstrations measured 1,4-Dioxane fluxes ranging from 13.3 to 55.9 mg/m2/day, an RDX flux of 4.9 mg/m2/day, Cr(VI) fluxes ranging from 2.3 to 2.8 mg/m2/day, and SO42- consumption rates ranging from 20 to 100 mg/L/day. These data suggest other low-partitioning contaminates and reactive ion-species could be monitored using the PFM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.