Electric resistivity, thermoelectric power and thermal conductivity
of a polycrystalline sample of the composite crystal
[Ca2CoO3.34]0.614[CoO2], also known as Ca3Co4O9,
have been measured below 300 K. Metallic conductivity accompanied by large
thermoelectric power has been observed down to 50 K. At 300 K, the
sample exhibits a thermoelectric power of S = 133 µV·K-1,
resistivity of ρ= 15 mΩ·cm and thermal conductivity of
κ= 9.8 mW·K-1·cm-1.
The resulting dimensionless figure of merit becomes
Z
T
300 = 3.5×10-2, which is comparable to the value reported
for a polycrystalline sample of NaCo2O4, indicating that the title compound is a potential
candidate for a thermoelectric material.
We explored advantages of diverse carbon nanotube forests with tailored structures synthesized by water-assisted chemical vapor deposition (CVD) growth (supergrowth) from engineered catalysts. By controlling the catalyst film thickness, we synthesized carbon nanotube (CNT) forests composed from nanotubes with different size and wall number. With extensive characterizations, many interesting dependencies among CNT forest structures and their properties, which were unknown previously, were found. For example, multiwalled carbon nanotubes (MWNTs) showed superior electronic conductivity while single-walled carbon nanotubes (SWNTs) showed superior thermal diffusivity, and sparse MWNTs achieved lower threshold voltage for field emission than dense SWNTs. These interesting trends highlight the complexity in designing and choosing the optimum CNT forest for use in applications.
The science and technology of carbon nanotubes are very interesting topics in the field of nanotechnology. It is considered that such nanotubes have excellent properties of electrical conduction, tensile strength, and thermal conduction. However, these properties are not well understood yet. Techniques for handling a nanotube and measuring these properties have not yet been established. Recently, a technique for synthesizing supergrowth carbon nanotubes, which form a highly pure single-walled carbon nanotube (SWNT) forest, has been developed. These supergrowth carbon nanotubes grow to as long as a millimeter scale. As-grown supergrowth carbon nanotubes include about 5 Â 10 11 SWNTs per square centimeter. The solid of supergrowth carbon nanotubes is prepared by reducing the distance between SWNTs. We have investigated the thermal conduction of such carbon nanotubes and were successful in measuring the thermal diffusivity of self-standing samples of as-grown supergrowth carbon nanotubes and their solid using the laser flash method. It was found that the carbon nanotube samples show a comparable thermal diffusivity to isotropic graphite. We have also measured the temperature dependence of the thermal diffusivity of the supergrowth carbon nanotube samples.
The National Metrology Institute of Japan (NMIJ) of AIST has been studying the laser flash method in order to establish an SI traceable thermaldiffusivity standard. Key technologies have been developed to reduce the uncertainty in laser flash measurements. In the present study, an uncertainty evaluation has been carried out on the laser flash measurement method in order to determine the thermal diffusivity value of IG-110, a grade of isotropic high-density graphite, as a candidate reference material. The thermal diffusivity measured by the laser flash method is derived from a specimen thickness and a heat diffusion time. And a laser flash measurement is carried out at a given temperature. The measurement system is composed of three sections corresponding to each measured quantity: length, time, and temperature. Therefore, we checked and calibrated our measurement system, and estimated the uncertainty of measurement results for the case of a grade of isotropic graphite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.