We propose an efficient hybrid automatic repeat request (HARQ) method that simultaneously achieves packet combining and resolution of the collisions of random access identifiers (RAIDs) during retransmission in a non-orthogonal multiple access (NOMA)-based random access system. Here, the RAID functions as a separator for simultaneously received packets that use the same channel in NOMA. An example of this is a scrambling code used in 4G and 5G systems. Since users independently select a RAID from the candidate set prepared by the system, the decoding of received packets fails when multiple users select the same RAID. Random RAID reselection by each user when attempting retransmission can resolve a RAID collision; however, packet combining between the previous and retransmitted packets is not possible in this case because the base station receiver does not know the relationship between the RAID of the previously transmitted packet and that of the retransmitted packet. To address this problem, we propose a HARQ method that employs novel hierarchical tree-structured RAID groups in which the RAID for the previous packet transmission has a one-to-one relationship with the set of RAIDs for retransmission. The proposed method resolves RAID collisions at retransmission by randomly reselecting for each user a RAID from the dedicated RAID set from the previous transmission. Since the relationship between the RAIDs at the previous transmission and retransmission is known at the base station, packet combining is achieved simultaneously. Computer simulation results show the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.