Background
Acute exacerbation of interstitial lung disease (AE-ILD) is the most serious complication in lung cancer patients with pre-existing ILD receiving chemotherapy. The role of vascular endothelial growth factor (VEGF) in pathogenesis of AE-ILD is conflicting. The influence of bevacizumab (Bev), a monoclonal antibody against VEGF, on lung cancer patients with pre-existing ILD remains unclear. We examined the effect of Bev on reducing AE-ILD risk in non-squamous non-small cell lung cancer (NSCLC) patients receiving chemotherapy.
Methods
We analysed incidence of AE-ILD and outcomes of 48 patients with advanced non-squamous NSCLC with ILD who received first-line chemotherapy with (Bev group,
n
= 17) and without (non-Bev group,
n
= 31) Bev between July 2011 and July 2016. Gray’s test, which was competing risk analysis during the study period, was performed for both groups.
Results
The most common regimen used for first-line chemotherapy was the combination of carboplatin plus pemetrexed (PEM) in both groups. The incidences of chemotherapy-related AE-ILD 120 days after first-line chemotherapy initiation were significantly lower in the Bev than in the non-Bev groups (0% vs. 22.6%,
p
= 0.037, Gray’s test). However, there were no differences in development of progressive disease of lung cancer and other events as the competing risk factors of AE-ILD between the two groups. Only patients receiving PEM-containing regimens also showed a significant difference in the incidence of AE-ILD between the two groups (
p
= 0.044). The overall-cumulative incidence of AE-ILD during the first-line and subsequent chemotherapy was 29.2% (14 of the 48). The median progression-free survival was significantly longer in the Bev than in the non-Bev groups (8.0 vs. 4.3 months,
p
= 0.026).
Conclusions
The addition of Bev to chemotherapy regimens may reduce the risk of chemotherapy-related AE-ILD in patients with lung cancer.
Electronic supplementary material
The online version of this article (10.1186/s12890-019-0838-2) contains supplementary material, which is available to authorized users.
The present study suggested that the ABCB1 1236TT-2677TT-3435TT genotype was associated with higher plasma concentration and the risk of developing higher toxicity in patients treated with erlotinib.
Determinants of interindividual variability in erlotinib pharmacokinetics (PK) and adverse events remain to be elucidated. This study with 50 Japanese non-small-cell lung cancer patients treated with oral erlotinib at a standard dose of 150 mg aimed to investigate whether genetic polymorphisms affect erlotinib PK and adverse events. Single nucleotide polymorphisms (SNPs) in genes encoding metabolizing enzymes (CYP1A1, CYP1A2, CYP2D6, CYP3A4, CYP3A5, UGT1A1, UGT2B7, GSTM1, and GSTT1) or efflux transporters (ABCB1, and ABCG2) were analyzed as covariates in a population PK model. The ABCB1 1236C>T (rs1128503) polymorphism, not ABCB1*2 haplotype (1236TT-2677TT-3455TT, rs1128503 TT-rs2032582 TT-rs1045642 TT), was a significant covariate for the apparent clearance (CL/F), with the TT genotype showing a 29.4% decrease in CL/F as compared with the CC and the CT genotypes. A marginally higher incidence of adverse events (mainly skin rash) was observed in the TT genotype group; however, patients with high plasma erlotinib exposure did not always experience skin rash. None of the other SNPs affected PK or adverse events. The ABCB1 genotype is a potential predictor for erlotinib adverse events. Erlotinib might be used with careful monitoring of adverse events in patients with ABCB1 polymorphic variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.