Gut dysbiosis caused by antibiotics impairs response to immune checkpoint blockade (ICB). Gut microbiota is becoming an attractive therapeutic target for cancer. The Clostridium butyricum MIYAIRI 588 strain is a probiotic therapy used to improve symptoms related to antibiotic-induced dysbiosis in Japan. We hypothesized that probiotic Clostridium butyricum therapy (CBT) may affect the therapeutic efficacy of ICBs. We retrospectively evaluated 118 advanced non-small cell lung cancer patients treated with ICBs at Kumamoto University Hospital. Survival analysis comparing patients given CBT before and/or after ICB was conducted using univariate analyses and Cox proportional hazards regression models using propensity score. Propensity score analyses confirmed that probiotic CBT treatment significatnly prolonged PFS and and OS. Probiotic CBT significantly associated with longer PFS and OS even in patients who received antibiotic therapy. This study suggests that probiotic CBT may have a positive impact on therapeutic efficacy of ICB in cancer patients. Research.
BackgroundStudies have suggested that chemotherapy after immune checkpoint inhibitors may confer an improved response for non–small cell lung cancer (NSCLC). However, potential selection bias in such studies has not been addressed. We therefore applied propensity score analysis to investigate the efficacy of chemotherapy after PD-1 inhibitor treatment (CAP) compared with chemotherapy alone.MethodsWe conducted a retrospective observational cohort study for patients treated at 47 institutions across Japan between April 1, 2014 and July 31, 2017. Eligible patients had advanced or recurrent NSCLC who have undergone chemotherapy. Patients subsequently treated with chemotherapy (docetaxel with or without ramucirumab, S-1 or pemetrexed) either after PD-1 inhibitor therapy (CAP cohort) or alone (control cohort) were included. The primary end point was objective response rate (ORR). Inverse probability weighting (IPW) was applied to adjust for potential confounding factors.ResultsA total of 1439 patients (243 and 1196 in the CAP and control cohorts, respectively) was available for unadjusted analysis. Several baseline characteristics—including age, histology,EGFRorALKgenetic alterations, and brain metastasis—differed significantly between the two cohorts. After adjustment for patient characteristics with the IPW method, ORR was 18.9% for the CAP cohort and 11.0% for the control cohort (ORR ratio 1.71; 95% CI 1.19 to 2.46; p=0.004). IPW-adjusted Kaplan-Meier curves showed that median progression-free survival (PFS) for the CAP and control cohorts was 2.8 and 2.7 months (IPW-adjusted HR 0.95; 95% CI 0.80 to 1.12; p=0.55), and median overall survival (OS) was 9.2 and 10.4 months (IPW-adjusted HR 1.05; 95% CI 0.86 to 1.28; p=0.63), respectively.ConclusionsAfter accounting for selection bias by propensity score analysis, CAP showed a significantly higher ORR compared with chemotherapy alone, with the primary end point of ORR being achieved. However, these results did not translate into a PFS or OS advantage, suggesting that prior administration of PD-1 inhibitors may result in a synergistic antitumor effect with subsequent chemotherapy, but that such an effect is transient. CAP therefore does not appear to achieve durable tumor control or confer a lasting survival benefit.
A disruption of immune checkpoints leads to imbalances in immune homeostasis, resulting in immune-related adverse events. Recent case studies have suggested the association between immune checkpoint inhibitors (ICIs) and the disorders of the coagulation-fibrinolysis system, implying that systemic immune activation may impact a balance between clotting and bleeding. However, little is known about the association of coagulation-fibrinolysis system disorder with the efficacy of ICIs. We retrospectively evaluated 83 lung cancer patients who received ICI at Kumamoto University Hospital. The association between clinical outcome and diseases associated with disorders of the coagulation-fibrinolysis system was assessed along with tumor PD-L1 expression. Among 83 NSCLC patients, total 10 patients (12%) developed diseases associated with the disorder of coagulation-fibrinolysis system. We found that disorders of the coagulation-fibrinolysis system occurred in patients with high PD-L1 expression and in the early period of ICI initiation. In addition, high tumor responses (72%) were observed, including two complete responses among these patients. Furthermore, we demonstrate T-cell activation strongly induces production of a primary initiator of coagulation, tissue factor in peripheral PD-L1high monocytes, in vitro. This study suggests a previously unrecognized pivotal role for immune activation in triggering disorders of the coagulation-fibrinolysis system in cancer patients during treatment with ICI.
Oral microbiota is associated with human diseases including cancer. Emerging evidence suggests that proton pump inhibitors (PPIs), which allow the oral microbiome to translocate into the gut, negatively influence the efficacy of immune checkpoint blockade (ICB) in cancer patients. However, currently there is no effective treatment that restores the decreased efficacy. To address this issue, we retrospectively evaluated 118 advanced or recurrent non-small cell lung cancer (NSCLC) patients treated with ICB and analyzed 80 fecal samples of patients with lung cancer by 16S metagenomic sequencing. Clostridium butyricum therapy using C. butyricum MIYAIRI 588 (CBM588), a live biotherapeutic bacterial strain, was shown to improve the ICB efficacy in lung cancer. Thus, we investigated how CBM588 affects the efficacy of ICB and the gut microbiota of lung cancer patients undergoing PPI treatment. We found that PPI treatment significantly decreased the efficacy of ICB in NSCLC patients, however, CBM588 significantly restored the diminished efficacy of ICB and improved survival. In addition, CBM588 prolonged overall survival in patients receiving PPIs and antibiotics together. The fecal analysis revealed that PPI users had higher abundance of harmful oral-related pathobionts and lower abundance of beneficial gut bacteria for immunotherapy. In contrast, patients who received CBM588 had lesser relative abundance of potentially harmful oral-related bacteria in the gut. Our research suggests that manipulating commensal microbiota by CBM588 may improve the therapeutic efficacy of ICB in cancer patients receiving PPIs, highlighting the potential of oral-related microbiota in the gut as a new therapeutic target for cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.