Phase-based video magnification methods can magnify and reveal subtle motion changes invisible to the naked eye. In these methods, each image frame in a video is decomposed into an image pyramid, and subtle motion changes are then detected as local phase changes with arbitrary orientations at each pixel and each pyramid level. One problem with this process is a long computational time to calculate the local phase changes, which makes high-speed processing of video magnification difficult. Recently, a decomposition technique called the Riesz pyramid has been proposed that detects only local phase changes in the dominant orientation. This technique can remove the arbitrariness of orientations and lower the over-completeness, thus achieving high-speed processing. However, as the resolution of input video increases, a large amount of data must be processed, requiring a long computational time. In this paper, we focus on the correlation of local phase changes between adjacent pyramid levels and present a novel decomposition technique called the local Riesz pyramid that enables faster phase-based video magnification by automatically processing the minimum number of sufficient local image areas at several pyramid levels. Through this minimum pyramid processing, our proposed phase-based video magnification method using the local Riesz pyramid achieves good magnification results within a short computational time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.