Exploration of the conformational spaces of flexible oligosaccharides is essential to gain deeper insights into their functional mechanisms. Here we characterised dynamic conformation of a high-mannose-type dodecasaccharide with a terminal glucose residue, a critical determinant recognised by molecular chaperones. The dodecasaccharide was prepared by our developed chemoenzymatic technique, which uses C labelling and lanthanide tagging to detect conformation-dependent paramagnetic effects by NMR spectroscopy. The NMR-validated molecular dynamics simulation produced the dynamic conformational ensemble of the dodecasaccharide. This determined its spatial distribution as well as the glycosidic linkage conformation of the terminal glucose determinant. Moreover, comparison of our results with previously reported crystallographic data indicates that the chaperone binding to its target oligosaccharides involves an induced-fit mechanism.
Emp46p and Emp47p are yeast putative cargo receptors that recycle between the endoplasmic reticulum and the Golgi apparatus. These receptors can form complexes in a pH-dependent manner, but their molecular mechanisms remain unclear. Here, we successfully reproduced their interactions in vitro solely with their coiled-coil segments, which form stable heterotetramers in the neutral condition but segregate at lower pH. Mutational data identified a key glutamate residue of Emp46p that serves as the pH-sensing switch of their oligomer formation. Our findings elucidate the mechanisms of the dynamic cargo receptor interactions in the secretory pathway and the design framework of the environment-responsive molecular assembly and disassembly systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.