Kidney fibrosis is the final common pathway of all progressive chronic kidney diseases, of which diabetic nephropathy is the leading cause. Endothelial-to-mesenchymal transition (EndMT) has emerged as one of the most important origins of matrix-producing fibroblasts. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been introduced into the market as antidiabetes drugs. Here, we found that the DPP-4 inhibitor linagliptin ameliorated kidney fibrosis in diabetic mice without altering the blood glucose levels associated with the inhibition of EndMT and the restoration of microRNA 29s. Streptozotocin-induced diabetic CD-1 mice exhibited kidney fibrosis and strong immunoreactivity for DPP-4 by 24 weeks after the onset of diabetes. At 20 weeks after the onset of diabetes, mice were treated with linagliptin for 4 weeks. Linagliptin-treated diabetic mice exhibited a suppression of DPP-4 activity/protein expression and an amelioration of kidney fibrosis associated with the inhibition of EndMT. The therapeutic effects of linagliptin on diabetic kidneys were associated with the suppression of profibrotic programs, as assessed by mRNA microarray analysis. We found that the induction of DPP-4 observed in diabetic kidneys may be associated with suppressed levels of microRNA 29s in diabetic mice; linagliptin restored microRNA 29s and suppressed DPP-4 protein levels. Using cultured endothelial cells, we found that linagliptin inhibited TGF-β2–induced EndMT, and such anti-EndMT effects of linagliptin were mediated through microRNA 29 induction. These results indicate the possible novel pleiotropic action of linagliptin to restore normal kidney function in diabetic patients with renal impairment.
Integrin β1 and dipeptidyl peptidase (DPP)-4 play roles in endothelial cell biology. Vascular endothelial growth factor (VEGF)-A inhibits endothelial-to-mesenchymal transition (EndMT) through VEGF-R2, but through VEGF-R1 promotes EndMT by reducing the bioavailability of VEGF-A. Here we tested whether DPP-4-integrin β1 interactions have a role in EndMT in the renal fibrosis of diabetic nephropathy. In streptozotocin-induced fibrotic kidneys in diabetic CD-1 mice, levels of endothelial DPP-4, integrin β1, and phospho-integrin β1 were all higher and associated with plasma cystatin C elevation. The DPP-4 inhibitor linagliptin ameliorated kidney fibrosis, reduced plasma cystatin C levels, and suppressed endothelial levels of DPP-4, integrin β1, and phospho-integrin β1. In cultured endothelial cells, DPP-4 and integrin β1 physically interacted. Suppression of DPP-4 by siRNA was associated with suppression of integrin β1 and vice versa. Knockdown of either integrin β1 or DPP-4 resulted in the silencing of TGF-β2-induced TGF-β receptor heterodimer formation, smad3 phosphorylation, and EndMT. DPP-4 negatively regulated endothelial viability signaling by VEGF-R2 suppression and VEGF-R1 induction in endothelial cells. Thus, DPP-4 and integrin β1 interactions regulate key endothelial cell signal transduction in both physiological and pathological conditions including EndMT. Hence, inhibiting DPP-4 may be a therapeutic target for treating kidney fibrosis in diabetes.
Endothelial-to-mesenchymal transition (EndMT) emerges as an important source of fibroblasts. MicroRNA let-7 exhibits anti-EndMT effects and fibroblast growth factor (FGF) receptor has been shown to be an important in microRNA let-7 expression. The endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is a substrate of angiotensin-converting enzyme (ACE). Here, we found that AcSDKP inhibited the EndMT and exhibited fibrotic effects that were associated with FGF receptor-mediated anti-fibrotic program. Conventional ACE inhibitor plus AcSDKP ameliorated kidney fibrosis and inhibited EndMT compared to therapy with the ACE inhibitor alone in diabetic CD-1 mice. The endogenous AcSDKP levels were suppressed in diabetic animals. Cytokines induced cultured endothelial cells into EndMT; coincubation with AcSDKP inhibited EndMT. Expression of microRNA let-7 family was suppressed in the diabetic kidney; antifibrotic and anti-EndMT effects of AcSDKP were associated with the restoration of microRNA let-7 levels. AcSDKP restored diabetes- or cytokines-suppressed FGF receptor expression/phosphorylation into normal levels both in vivo and in vitro. These results suggest that AcSDKP is an endogenous antifibrotic molecule that has the potential to cure diabetic kidney fibrosis via an inhibition of the EndMT associated with the restoration of FGF receptor and microRNA let-7.
In patients with essential hypertension, an inter-relationship exists among metabolic syndrome, enhanced sodium sensitivity of the blood pressure and non-dipping. The elevated risk of cardiovascular diseases in patients with metabolic syndrome may be related to sodium-sensitive hypertension and non-dipping.
Background/Aims: In patients with primary renal diseases the current knowledge of hyperglycemia associated with corticosteroid therapy is limited. We therefore examined the prevalence and risk factors of glucocorticoid-induced diabetes mellitus (DM) in primary renal diseases. Methods: Patients were recruited with primary renal diseases who were started on corticosteroids between April 2002 and June 2005. In patients with DM, an impaired fasting glucose level and/or positive urinary glucose analyses before corticosteroids therapy were excluded. Results: During corticosteroid therapy (initial dose: prednisolone 0.75 ± 0.10 mg/kg/day), DM was newly diagnosed in 17 (40.5%) of 42 patients. All of the 17 patients were diagnosed as having DM by postprandial hyperglycemia at 2 h after lunch, although they had normal fasting blood glucose levels. Age (OR 1.40, 95% CI 1.06–1.84) and body mass index (OR 1.87, 95% CI 1.03–3.38) were determined as independent risk factors for glucocorticoid-induced DM. Conclusion: Over 40% of patients with primary renal disease developed DM during treatment with corticosteroids. A high age and high body mass index are the independent risk factors for glucocorticoid-induced DM. 24-hour urinary glucose analyses and postprandial plasma glucose are useful for detecting glucocorticoid-induced DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.