Male embryonic mice with mutations in the X-linked aristaless-related homeobox gene (Arx) developed with small brains due to suppressed proliferation and regional deficiencies in the forebrain. These mice also showed aberrant migration and differentiation of interneurons containing gamma-aminobutyric acid (GABAergic interneurons) in the ganglionic eminence and neocortex as well as abnormal testicular differentiation. These characteristics recapitulate some of the clinical features of X-linked lissencephaly with abnormal genitalia (XLAG) in humans. We found multiple loss-of-function mutations in ARX in individuals affected with XLAG and in some female relatives, and conclude that mutation of ARX causes XLAG. The present report is, to our knowledge, the first to use phenotypic analysis of a knockout mouse to identify a gene associated with an X-linked human brain malformation.
Dax-1 [dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (NR0B1)] is an orphan nuclear receptor acting as a suppressor of Ad4 binding protein/steroidogenic factor 1 [Ad4BP/SF-1 (NR5A1)] and as an anti-Sry factor in the process of gonadal sex differentiation. The roles of these nuclear receptors in the differentiation of the gonads and the adrenal cortex have been established through studies of the mutant phenotype in both mice and humans. However, the mechanisms underlying transcriptional regulation of these genes remain largely unknown. Here, we examined the relationship between Dax-1 gene transcription and the Wnt4 pathway. Reporter gene analysis revealed that Dax-1 gene transcription was activated by beta-catenin, a key signal-transducing protein in the Wnt pathway, acting in synergy with Ad4BP/SF-1. Interaction between beta-catenin and Ad4BP/SF-1 was observed using yeast two-hybrid and in vitro pull-down assays. The region of Ad4BP/SF-1 essential for this interaction consists of an acidic amino acid cluster, which resides in the first helix of the ligand-binding domain. Mutation of the amino acid cluster impaired transcriptional activation of Dax-1 as well as interaction of Ad4BP/SF-1 with beta-catenin. These results were supported by in vivo observations using Wnt4 gene-disrupted mice, in which Dax-1 gene expression was decreased significantly in sexually differentiating female gonads. We thus conclude that Wnt4 signaling mediates the increased expression of Dax-1 as the ovary becomes sexually differentiated.
In most animals, the gonads develop symmetrically, but most birds develop only a left ovary. A possible role for estrogen in this asymmetric ovarian development has been proposed in the chick, but the mechanism underlying this process is largely unknown. Here, we identify the molecular mechanism responsible for this ovarian asymmetry. Asymmetric PITX2 expression in the left presumptive gonad leads to the asymmetric expression of the retinoic-acid (RA)-synthesizing enzyme, RALDH2, in the right presumptive gonad. Subsequently, RA suppresses expression of the nuclear receptors Ad4BP/SF-1 and estrogen receptor ␣ in the right ovarian primordium. Ad4BP/SF-1 expressed in the left ovarian primordium asymmetrically upregulates cyclin D1 to stimulate cell proliferation. These data suggest that early asymmetric expression of PITX2 leads to asymmetric ovarian development through up-or downregulation of RALDH2, Ad4BP/SF-1, estrogen receptor ␣ and cyclin D1.
The orphan receptor Ad4BP/SF-1 (NR5A1) is a constitutive activator, and its activity is repressed by another orphan receptor, Dax-1 (NR0B1). In the present study, we investigated the molecular mechanisms underlying this repression by Dax-1. Yeast two-hybrid and transient-transfection assays confirmed the necessity of three LXXLL-related motifs in Dax-1 for interaction with and repression of Ad4BP/SF-1. In vitro pull-down experiments confirmed that Dax-1 interacts with Ad4BP/SF-1 and also with LRH-1 (NR5A2). The target specificity of the LXXLL-related motifs was indicated by the observations that Ad4BP/SF-1, ER␣ (NR3A1), LRH-1, ERR2 (NR3B2), and fly FTZ-F1 (NR5A3) interacted through their ligand binding domains with all the LXXLLrelated motifs in Dax-1 whereas HNF4 (NR2A1) and ROR␣ (NR1F1) did not. Transcriptional activities of the receptors whose DNA binding domains (DBDs) were replaced by the GAL4 DBD were repressed by Dax-1 to various levels, which correlated with the strength of interaction. Amino acid substitutions revealed that Ad4BP/SF-1 and LRH-1 preferentially interact with L(؉1)XXLL-related motifs containing serine, tyrosine, serine, and threonine at positions ؊2, ؉2, ؉3, and ؉6, respectively. Taken together, our results indicate that the specificities of LXXLL-related motifs in Dax-1 based on their amino acid sequences play an important role in regulation of orphan receptors.More than 70 molecular species of the nuclear receptor superfamily have been identified to date in animals ranging from hydras to humans (47). These transcription factors are generally characterized by the presence of two conserved structural features, a DNA binding domain (DBD) composed of two zinc fingers and a ligand binding domain (LBD) located at the C-terminal region. Various lipophilic ligands interact with the cognate LBDs in apo-type receptors, converting them into an active holo-type conformation that can dynamically regulate transcription (14, 38).The general structure of the LBD is composed predominantly of 12 helices. Interaction with ligand induces allosteric changes in conformation, especially in the configuration of helix 12 at the C terminus of the LBD, leading to transcriptional activation (3, 9) or repression (4, 57). Helix 12 is often referred to as the AF-2 core, which in some receptors is a conserved domain essential for ligand-dependent transcriptional activation (14, 37). Transcriptional coactivators mediate activating signals by binding to nuclear receptors in a ligand-dependent manner (reference 67 and references therein). For this receptor-coactivator interaction, conserved sequences containing a short signature motif of LXXLL (where L is leucine and X can be any amino acid) have been implicated (18,31,60). The conserved leucines in these so-called LXXLL motifs, or NR-boxes, appear to be indispensable for hydrophobic interaction with nuclear receptors (10,46,57). In addition, amino acid residues flanking the core LXXLL are known to influence the binding specificity (8,17,29,36,39,65). In the absence of li...
The ugp operon of Escherichia coli includes genes involved in the uptake of sn-glycerol-3-phosphate and glycerophosphoryl diesters and belongs to the pho regulon which is induced by phosphate limitation. This operon has two transcriptional initiation sites, as determined by SI nuclease mapping of the in vivo transcripts. The downstream promoter has multiple copies of the pho box, the consensus sequence shared by the pho promoters; the upstream promoter has a consensus sequence for the promoters regulated by cyclic AMP and its receptor protein, CRP. PhoB protein, which is the transcriptional activator for the pho regulon, protected the regulatory region with the pho boxes in DNase I footprinting experiments and activated transcription from the downstream promoter in vitro. Studies with transcriptional fusions between ugp and a promoterless gene for chloramphenicol acetyltransferase show that the upstream promoter is induced by carbon starvation in a manner that required the cya and crp genes. PhoB protein may act as a repressor for this upstream promoter, which also overlaps the upstream third pho box. The downstream promoter was induced by phosphate starvation and requires the PhoB protein for its activation as do the other pho regulon promoters. These results suggest that the two promoters function alternately in responding to phosphate or carbon starvation, thus providing the cell with a means to adapt to these physiological stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.