Ultrafine-grained materials are attractive for achieving superplastic elongations provided the grains are reasonably stable at elevated temperatures. Since the strain rate in superplasticity varies inversely with the grain size raised to a power of two, a reduction in grain size to the submicrometer level leads to the occurrence of superplastic flow within the region of high strain rate superplasticity at strain rates >10 -2 s -1 . This paper tabulates and examines the various reports of superplasticity in ultrafine-grained materials. It is shown that these materials exhibit many characteristics similar to conventional superplastic alloys including strain rates that are consistent with the standard model for superplastic flow and the development of internal cavitation during the flow process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.