Two-stroke engines are often used for their low cost, simplicity, and power density. However, these engines suffer efficiency penalties due to fuel short-circuiting. Increasing power density has previously been an area of focus for performance two-stroke engines — such as in dirt bikes. Smaller-displacement engines have also been used to power remote controlled cars, boats, and aircraft. These engines typically rely on gasoline or higher-octane liquid fuels. However, natural gas is an inherently knock-resistant fuel and small natural gas engines and generators could see increased market penetration. Power generators typically operate at a fixed frequency with varied load, which can take advantage of intake and exhaust system tuning. In addition, stationary engines may not be subject to size restrictions of optimal intake and exhaust systems. This paper examines methods to improve combustion stability, efficiency, and power density of a 29cc air-cooled two-stroke engine converted to operate on natural gas. Initial conversion showed significant penalties on delivery ratio, which lowered power density and efficiency. To overcome these issues a tuned intake pipe, two exhaust resonators, and a combustion dome were designed and tested. The engine was operated at 5400 RPM and fueling was adjusted to yield maximum brake-torque (MBT). All tests were conducted under wide-open throttle conditions. The intake and exhaust systems were designed based on Helmholtz resonance theory and empirical data. The engine utilized a two-piece cylinder head with removable combustion dome. The combustion dome was modified for optimal compression ratio while decreasing squish area and volume. With all designs incorporated, power increased from 0.22 kW to 1.07 kW — a factor of 4.86. Efficiency also increased from 7% to 12%. In addition to these performance gains, the coefficient of variation (COV) of indicated mean effective pressure (IMEP) decreased from just above 11% to less than 4%.
Two-stroke engines continue to dominate the small engine market based on cost and simplicity, though companies have incorporated small four-stroke engines into handheld equipment. On the other end of the displacement spectrum, two-stroke natural gas engines are common in large-bore applications within the natural gas compression industry. Nearly 60% of homes utilize natural gas and could therefore benefit from its use as fuel for decentralized power generation. Such use for home applications does not require significant investment in infrastructure, which has limited its penetration into the transportation sector. Companies already offer back-up power generation systems for home use fueled by either natural gas or propane. These systems are often cost prohibitive and rely on four-stroke engines. The ultimate goal is to apply advanced technologies, such as direct fuel injection, to improve efficiency of small two-stroke engines. To establish a baseline, researchers developed a micro-engine test facility to examine effects of ignition timing, compression ratio, and intake and exhaust systems on efficiency and combustion stability. This research focuses on an air-cooled, spark-ignited, two-stroke engine converted to operate on natural gas. In addition to fuel conversion, an electronic ignition system replaced the stock magneto driven coil. The added trigger wheel provided a signal for control of ignition and injection timing, and for in-cylinder pressure time alignment. Engine displacement was 29-cc with a bore and stroke of 35 mm and 30 mm. Tests were performed on gasoline and a natural gas blend at an engine speed of 5400 RPM. Fuel flow was adjusted for each case to produce maximum brake torque. Two different fuel delivery methods were tested for natural gas — a mass flow controller and an electronic port fuel injector. Tests examined the effects of two compression ratios for spark timings of 15, 20, 25, and 30 CAD BTDC. Fumigation and port injection decreased efficiency compared to gasoline by 24 and 32%, respectively. Brake power also decreased by 64 and 65% on average. A similar trend occurred for delivery ratio due to the volume of fresh air displaced by natural gas. Delivery ratio of fumigation and port injection decreased compared to gasoline by 12 and 27%, respectively. The coefficient of variation in indicated mean effective pressure varied from six to 27% over compression ratio and ignition timing sweeps.
An Oscillating Linear Engine Alternator (OLEA) has the potential to overcome the thermal, mechanical, and combustion inadequacies encountered by the conventional slider-crank engines. The linear engines convert the reciprocating piston motion into electricity, thereby eliminating needless crankshaft linkages and rotational motion. As the dead center positions are not explicitly identified unlike crankshaft engines, the linear engine exhibits different stroke and compression ratio every cycle and should manage the unfavorable events like misfire, rapid load changes, and overfueling without the energy storage of a flywheel. Further, the apparatus control and management strategy is difficult for OLEA when compared to conventional engines and depends on the combustion event influencing the translator dynamics. In this research paper, the MATLAB®/Simulink numerical model of a single cylinder, mechanical spring assisted, 2-stroke natural gas fueled, spark-ignited OLEA was investigated to enhance the perception of the coupled system. The effect of combustion and heat transfer characteristics on translator dynamics and performance of OLEA were analyzed by using Wiebe form factors, combustion duration, and heat transfer correlations. Variation in the Wiebe form factors revealed interesting insights into the translator dynamics and in-cylinder thermodynamics of a coupled system. High translator velocity, acceleration, and higher heat transfer rate were favored by low combustion duration.
<div class="section abstract"><div class="htmlview paragraph">The control and design optimization of a Free Piston Engine Generator (FPEG) has been found to be difficult as each independent variable changes the piston dynamics with respect to time. These dynamics, in turn, alter the generator and engine response to other governing variables. As a result, the FPEG system requires an energy balance control algorithm such that the cumulative energy delivered by the engine is equal to the cumulative energy taken by the generator for stable operation. The main objective of this control algorithm is to match the power generated by the engine to the power demanded by the generator. In a conventional crankshaft engine, this energy balance control is similar to the use of a governor and a flywheel to control the rotational speed. In general, if the generator consumes more energy in a cycle than the engine provides, the system moves towards a stall. If the generator consumes less energy, then the effective stroke, compression ratio and maximum translator velocity must rise steadily from cycle-to-cycle until the heat transfer losses stop the increase. Moreover, when stiff springs are added to the FPEG system, the dynamics becomes more sinusoidal and more consistent with increasing spring stiffness. To understand the behavior of proposed control and cycle-to-cycle variations, a comprehensive FPEG numerical model with a 1 kW target electric power was developed in MATLAB<sup>®</sup>/Simulink. An FPEG system corresponding to that numerical model has been operated in the laboratory. This MATLAB<sup>®</sup>/Simulink numerical model has been used to examine the sensitivity of FPEG dynamics and performance parameters to the changes in design and operating inputs. A difficulty during the modeling is associated with the cycle-to-cycle energy balance, and this difficulty is also reflected in the real-world FPEG control. Therefore, the authors have devised a control strategy similar to the real world intended control methodology. In this numerical model, two different feedback control methodologies were implemented and investigated. These control methodologies were applied to regulate the generator load with selected control or input variables, namely peak pressure, mid-stroke piston velocity, trapped compression ratio and dead center set points. The controllers with optimized coefficients demonstrated the feasibility of energy balance management during the transient operation. Based on the simulation results, the controllers with compression ratio, peak pressure and dead center clearance set points as control variables demonstrated stable FPEG operation whereas the mid-stroke velocity failed to achieve the steady-state operation due to deviation in the piston dynamics. The simulation results from this study will be used as the pathway for improving and optimizing the experimental FPEG design.</div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.