We develop a new generalized form of the fractional kinetic equation involving a generalized k-Bessel function. The generalized k-Mittag-leffler function E γ,q k,α,β (.) is discussed in terms of the solution of the fractional kinetic equation in the present paper. The results obtained here are quite general in nature and capable of yielding known and as well new results.
Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (p, q)-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.
Vaccination and treatment are the most effective ways of controlling the transmission of most infectious diseases. While vaccination helps susceptible individuals to build either a long-term immunity or short-term immunity, treatment reduces the number of disease-induced deaths and the number of infectious individuals in a community/nation. In this paper, a nonlinear deterministic model with time-dependent controls has been proposed to describe the dynamics of bacterial meningitis in a population. The model is shown to exhibit a unique globally asymptotically stable disease-free equilibrium ℰ0, when the effective reproduction number ℛVT ≤ 1, and a globally asymptotically stable endemic equilibrium ℰ1, when ℛVT > 1; and it exhibits a transcritical bifurcation at ℛVT = 1. Carriers have been shown (by Tornado plot) to have a higher chance of spreading the infection than those with clinical symptoms who will sometimes be bound to bed during the acute phase of the infection. In order to find the best strategy for minimizing the number of carriers and ill individuals and the cost of control implementation, an optimal control problem is set up by defining a Lagrangian function L to be minimized subject to the proposed model. Numerical simulation of the optimal problem demonstrates that the best strategy to control bacterial meningitis is to combine vaccination with other interventions (such as treatment and public health education). Additionally, this research suggests that stakeholders should press hard for the production of existing/new vaccines and antibiotics and their disbursement to areas that are most affected by bacterial meningitis, especially Sub-Saharan Africa; furthermore, individuals who live in communities where the environment is relatively warm (hot/moisture) are advised to go for vaccination against bacterial meningitis.
A remarkably large number of Grüss type fractional integral inequalities involving the special function have been investigated by many authors. Very recently, Kalla and Rao (Matematiche LXVI(1):57-64, 2011) gave two Grüss type inequalities involving the Saigo fractional integral operator. Using the same technique, in this paper, we establish certain new Grüss type fractional integral inequalities involving the Gauss hypergeometric function. Moreover, we also consider their relevances for other related known results. MSC: 26D10; 26A33
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.