Water distribution systems, where flow in some pipes is not measured or storage tanks are connected together, calculation of demand pattern coefficients of the network is difficult. Since, Hazen-Williams coefficients of the network are also unknown; the problem is becoming unintelligible further. The present study proposes a new method for simultaneous calibration of demand pattern and Hazen-Williams coefficients that uses the Ant Colony Optimization (ACO) algorithms coupled with the hydraulic simulator (EPANET2) in a MATLAB code. In this paper demand pattern and Hazen-Williams coefficients are the calibration parameters and measured data consist of nodal pressure heads and pipe flows. The defined objective function minimizes the difference between the measured and simulated values. The new proposed method was tested on a two-loop test example and a real water distribution network. The results show that the new calibration model is able to calibrate demand pattern and Hazen-Williams coefficients simultaneously with high precision and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.