Power systems are stretched across thousands of miles of diverse territories, often in remote locations, to generate and transfer the energy to geographically dispersed customers. The system is therefore subjected to a wide range of natural hazards which could potentially damage critical system components and cause interruption of electricity supply in some areas. To improve system resilience against natural hazards, management frameworks are required to identify hazardous areas and prioritize reinforcement activities in order to take the most out of the limited resources.Landslide is a natural disaster that involves the breakup and downhill flow of rock, mud, water, and anything caught in the path. It is a phenomenon frequently occurred in some parts of the world that could result in the failure of power transmission networks. Consequently, in this paper, a novel approach has been proposed that quantifies the landslide hazard, its damage to power system components, and the impacts on the overall system performance to prioritize reinforcement activities and mitigate the landslide vulnerability. The proposed approach is applied to a real power system and the obtained results are discussed in detail.
Characterizing and modeling the fatigue performance of an asphalt binder is important when designing asphalt mixtures which can resist premature fatigue failure. Performance grading (PG) standards include the fatigue factor ( G*.sinδ) to evaluate the fatigue resistance of asphalt binders. This criterion seems to be inaccurate, especially when applied to modified asphalt binders. American Association of State Highway and Transportation Officials (AASHTO) TP 101 has been designed to evaluate the fatigue resistance of asphalt binders using Schapery’s work potential theory. The damage evolution rate ( α parameter) is the key element of this method and is calculated from the rheological properties of the undamaged asphalt binder using the slope of the relaxation modulus versus the time on the log-log scale. Owing to the difficulties of conducting the relaxation test, the relaxation modulus is usually obtained using conversion methods. However, AASHTO TP 101 uses a simplified indirect method to calculate α. The present study developed a computer program called RheoSUT with which to construct relaxation master curves using different methods. The relaxation master curves of 27 asphalt binders were evaluated for estimation of the value of α. The results indicated that AASHTO TP 101 yields higher values of α. The results of the sensitivity analysis show that overestimation of α will result in up to about 200% error in the estimation of the fatigue life ( Nf). It is also shown that binder aging and styrene-butadiene-styrene (SBS) modification directly affected the rheological parameters and relaxation master curves. Finally, it is recommended to use the relaxation-master curved based methods of calculation of α instead of the storage-modulus based ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.