AIDS is mainly a sexually transmitted disease, and accordingly, mucosal tissues are the primary sites of natural human immunodeficiency virus type-1 (HIV-1) transmission. Mucosal immunoglobulin A (IgA) antibody specific for HIV-1 envelope gp41 subunit is one correlate of protection in individuals who are highly sexually exposed to HIV-1 but remain persistently IgG seronegative (HEPS). Understanding these peculiar IgAs at the gene and functional level is possible only with monoclonal IgAs. We have constructed a mucosal Fab IgA library from HEPS and have characterized a series of HIV-1 IgAs specific for gp41 that, in vitro, are transcytosis-blocking and infection-neutralizing. Characterization of their IgA genes shows that Fab specific for the gp41 membrane-proximal region harbors a long heavy-chain CDR3 loop (CDRH3) similar to the two broadly neutralizing IgG monoclonal antibodies, 2F5 and 4E10. Furthermore, the selected Fab IgA shows extensive somatic mutations that cluster in the CDR regions, indicating that affinity maturation due to an antigen-driven process had occurred in HEPS individuals, presumably upon multiple exposures to HIV. This analysis of HEPS monoclonal IgA gives a unique opportunity to correlate an antibody function (resistance to a pathogen in vivo) with an antibody gene. Such neutralizing monoclonal IgAs could be used in microbicide formulation.
Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYL-SEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (K i ) were found to be 47 mm for the 24-mer and 30 mm for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.