Using Machine Learning (ML) prediction to achieve a successful, cost-effective, Condition-Based Maintenance (CBM) strategy has become very attractive in the context of Industry 4.0. In other fields, it is well known that in order to benefit from the prediction capability of ML algorithms, the data preparation phase must be well conducted. Thus, the objective of this paper is to investigate the effect of data preparation on the ML prediction accuracy of Gas Turbines (GTs) performance decay. First a data cleaning technique for robust Linear Regression imputation is proposed based on the Mixed Integer Linear Programming. Then, experiments are conducted to compare the effect of commonly used data cleaning, normalization and reduction techniques on the ML prediction accuracy. Results revealed that the best prediction accuracy of GTs decay, found with the k-Nearest Neighbors ML algorithm, considerately deteriorate when changing the data preparation steps and/or techniques. This study has shown that, for effective CBM application in industry, there is a need to develop a systematic methodology for design and selection of adequate data preparation steps and techniques with the proposed ML algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.