Due to the high number of students and the possibility of a high death toll during an earthquake, school buildings are considered as highly important structures in most of today’s seismic codes. The constituents of the structures of these buildings including the load bearing walls and the steel/ concrete components have to be designed so that they are at least capable of life-safety structural performance in the face of strong earthquakes. Meanwhile, due to their significant effects on the response of the structure, the performance of load-bearing and infill walls is particularly important. Observations from educational facilities after the Ezgeleh earthquake of November 12th, 2017 have revealed that the school buildings with unconfined load-bearing wall structural system located in near and far fields of the earthquake have sustained the highest level of damage. Schools with steel and reinforced concrete (RC) structural systems have fared much better in terms of seismic performance and damage. In this study, in addition to the specifications of the 2017 Ezgeleh earthquake, the structural systems and the infill walls used in the educational facilities in the earthquake – affected areas are introduced. Then, the performances of different school buildings with varying structural systems located in the far and near fields of the earthquake were investigated. The results obtained from field observations have been summed up and presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.