Investment experts, who deal with stock price estimation, commonly look for the most accurate and appropriate statistical techniques to make decisions on investment. The aim of this study is to improve the accuracy of stock price prediction models through modifying the structure of a combined neural network model with time-series data, in which the main contribution is to insert the time-series analysis prediction into the hidden layer of the neural network. The proposed structure is made up of neural networks and time-series analysis, with variable reduction used to remove attributes with inter-correlations. Data has been collected over six years (72 months) from the Iranian stock market, including the number of trades, new-coin price, gold-18 price, US Dollar and Euro equivalent currencies, oil-index price, Brent-oil price, industry index, and balanced stock index, followed by developing the prediction models. Comparing the performance criteria of the proposed structure to the traditional ones in terms of the mean square and mean absolute errors revealed that inserting time-series estimated variables into hidden layers would improve the performance of neural network models to estimate stock prices for making investment decisions. Doi: 10.28991/HIJ-2022-03-01-05 Full Text: PDF
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.