Fine-grained traffic flow measurement, which provides useful information for network management tasks and security analysis, can be challenging to obtain due to monitoring resource constraints. The alternate approach of inferring flow statistics from partial measurement data has to be robust against dynamic temporal/spatial fluctuations of network traffic. In this paper, we propose an intelligent Traffic (de)Aggregation and Measurement Paradigm (iSTAMP), which partitions TCAM entries of switches/routers into two parts to: 1) optimally aggregate part of incoming flows for aggregate measurements, and 2) de-aggregate and directly measure the most informative flows for per-flow measurements. iSTAMP then processes these aggregate and perflow measurements to effectively estimate network flows using a variety of optimization techniques. With the advent of Software-Defined-Networking (SDN), such real-time rule (re)configuration can be achieved via OpenFlow or other similar SDN APIs. We first show how to design the optimal aggregation matrix for minimizing the flow-size estimation error. Moreover, we propose a method for designing an efficient-compressive flow aggregation matrix under hard resource constraints of limited TCAM sizes. In addition, we propose an intelligent Multi-Armed Bandit based algorithm to adaptively sample the most "rewarding" flows, whose accurate measurements have the highest impact on the overall flow measurement and estimation performance. We evaluate the performance of iSTAMP using real traffic traces from a variety of network environments and by considering two applications: traffic matrix estimation and heavy hitter detection. Also, we have implemented a prototype of iSTAMP and demonstrated its feasibility and effectiveness in Mininet environment.
Network inference (or tomography) problems, such as traffic matrix estimation or completion and link loss inference, have been studied rigorously in different networking applications. These problems are often posed as under-determined linear inverse (UDLI) problems and solved in a centralized manner, where all the measurements are collected at a central node, which then applies a variety of inference techniques to estimate the attributes of interest. This paper proposes a novel framework for decentralizing these large-scale under-determined network inference problems by intelligently partitioning it into smaller sub-problems and solving them independently and in parallel. The resulting estimates, referred to as multiple descriptions, can then be fused together to compute the global estimate. We apply this Multiple Description and Fusion Estimation (MDFE) framework to three classical problems: traffic matrix estimation, traffic matrix completion, and loss inference. Using real topologies and traces, we demonstrate how MDFE can speed up computation while maintaining (even improving) the estimation accuracy and how it enhances robustness against noise and failures. We also show that our MDFE framework is compatible with a variety of existing inference techniques used to solve the UDLI problems.
Traffic matrix measurement provides essential information for network design, operation and management. In today's networks, it is challenging to get accurate and timely traffic matrix due to the hard resource constraints of network devices. Recently, Software-Defined Networking (SDN) technique enables customizable traffic measurement, which can provide flexible and fine-grain visibility into network traffic. However, the existing software-defined traffic measurement solutions often suffer from feasibility and scalability issues. In this paper, we seek accurate, feasible and scalable traffic matrix estimation approaches. We propose two strategies, called Maximum Load Rule First (MLRF) and Large Flow First (LFF), to design feasible traffic measurement rules that can be installed in TCAM entries of SD-N switches. The statistics of the measurement rules are collected by the controller to estimate fine-grained traffic matrix. Both MLRF and LFF satisfy the flow aggregation constraints (determined by associated routing policies) and have low-complexity. Extensive simulation results on real network and traffic traces reveal that MLRF and LFF can achieve high accuracy of traffic matrix estimation and high probability of heavy hitter detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.