Highlights d A comprehensive proteomic analyses of localized prostate cancers d Integration of all levels of the central dogma (DNA / RNA / protein) d ETS fusions have divergent effects on transcriptome and proteome d Combining genomics and proteomics improves biomarker performance
S 2020, 'GATA6 expression distinguishes classical and basal-like subtypes in advanced pancreatic cancer. ', Clinical Cancer Research.
◥Purpose: The molecular drivers of antitumor immunity in pancreatic ductal adenocarcinoma (PDAC) are poorly understood, posing a major obstacle for the identification of patients potentially amenable for immune-checkpoint blockade or other novel strategies. Here, we explore the association of chemokine expression with effector T-cell infiltration in PDAC.Experimental Design: Discovery cohorts comprised 113 primary resected PDAC and 107 PDAC liver metastases. Validation cohorts comprised 182 PDAC from The Cancer Genome Atlas and 92 PDACs from the Australian International Cancer Genome Consortium. We explored associations between immune cell counts by immunohistochemistry, chemokine expression, and transcriptional hallmarks of antitumor immunity by RNA sequencing (RNA-seq), and mutational burden by whole-genome sequencing.Results: Among all known human chemokines, a coregulated set of four (CCL4, CCL5, CXCL9, and CXCL10) was strongly associated with CD8 þ T-cell infiltration (P < 0.001). Expression of this "4-chemokine signature" positively correlated with transcriptional metrics of T-cell activation (ZAP70, ITK, and IL2RB), cytolytic activity (GZMA and PRF1), and immunosuppression (PDL1, PD1, CTLA4, TIM3, TIGIT, LAG3, FASLG, and IDO1). Furthermore, the 4-chemokine signature marked tumors with increased T-cell activation scores (MHC I presentation, T-cell/ APC costimulation) and elevated expression of innate immune sensing pathways involved in T-cell priming (STING and NLRP3 inflammasome pathways, BATF3-driven dendritic cells). Importantly, expression of this 4-chemokine signature was consistently indicative of a T-cell-inflamed phenotype across primary PDAC and PDAC liver metastases.Conclusions: A conserved 4-chemokine signature marks resectable and metastatic PDAC tumors with an active antitumor phenotype. This could have implications for the appropriate selection of PDAC patients in immunotherapy trials.
Objective The statin family of cholesterol-lowering drugs has been shown to induce tumor-specific apoptosis by inhibiting the rate-limiting enzyme of the mevalonate (MVA) pathway, HMG-CoA reductase (HMGCR). Accumulating evidence suggests that statin use may delay prostate cancer (PCa) progression in a subset of patients; however, the determinants of statin drug sensitivity in PCa remain unclear. Our goal was to identify molecular features of statin-sensitive PCa and opportunities to potentiate statin-induced PCa cell death. Methods Deregulation of HMGCR expression in PCa was evaluated by immunohistochemistry. The response of PCa cell lines to fluvastatin-mediated HMGCR inhibition was assessed using cell viability and apoptosis assays. Activation of the sterol-regulated feedback loop of the MVA pathway, which was hypothesized to modulate statin sensitivity in PCa, was also evaluated. Inhibition of this statin-induced feedback loop was performed using RNA interference or small molecule inhibitors. The achievable levels of fluvastatin in mouse prostate tissue were measured using liquid chromatography–mass spectrometry. Results High HMGCR expression in PCa was associated with poor prognosis; however, not all PCa cell lines underwent apoptosis in response to treatment with physiologically-achievable concentrations of fluvastatin. Rather, most cell lines initiated a feedback response mediated by sterol regulatory element-binding protein 2 (SREBP2), which led to the further upregulation of HMGCR and other lipid metabolism genes. Overcoming this feedback mechanism by knocking down or inhibiting SREBP2 potentiated fluvastatin-induced PCa cell death. Notably, we demonstrated that this feedback loop is pharmacologically-actionable, as the drug dipyridamole can be used to block fluvastatin-induced SREBP activation and augment apoptosis in statin-insensitive PCa cells. Conclusion Our study implicates statin-induced SREBP2 activation as a PCa vulnerability that can be exploited for therapeutic purposes using clinically-approved agents.
Background Statins inhibit HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway. Epidemiological and pre-clinical evidence support an association between statin use and delayed prostate cancer (PCa) progression. Here, we evaluated the effects of neoadjuvant fluvastatin treatment on markers of cell proliferation and apoptosis in men with localized PCa. Methods Thirty-three men were treated daily with 80 mg fluvastatin for 4-12 weeks in a single-arm window-of-opportunity study between diagnosis of localized PCa and radical prostatectomy (RP) (ClinicalTrials.gov: NCT01992042). Percent Ki67 and cleaved Caspase-3 (CC3)-positive cells in tumor tissues were evaluated in 23 patients by immunohistochemistry before and after treatment. Serum and intraprostatic fluvastatin concentrations were quantified by liquid chromatography-mass spectrometry. Results Baseline characteristics included a median prostate-specific antigen (PSA) level of 6.48 ng/mL (IQR: 4.21-10.33). The median duration of fluvastatin treatment was 49 days (range: 27-102). Median serum low-density lipoprotein levels decreased by 35% after treatment, indicating patient compliance. Median PSA decreased by 12%, but this was not statistically significant in our small cohort. The mean fluvastatin concentration measured in the serum was 0.2 μM (range: 0.0-1.1 μM), and in prostatic tissue was 8.5 nM (range: 0.0-77.0 nM). At these concentrations, fluvastatin induced PCa cell death in vitro in a dose-and time-dependent manner. In patients, fluvastatin treatment did not significantly alter intratumoral Ki67 positivity; however, a median 2.7-fold increase in CC3 positivity (95% CI: 1.9-5.0, p = 0.007) was observed in postfluvastatin RP tissues compared with matched pre-treatment biopsy controls. In a subset analysis, this increase in CC3 was more pronounced in men on fluvastatin for >50 days. Conclusions Fluvastatin prior to RP achieves measurable drug concentrations in prostatic tissue and is associated with promising effects on tumor cell apoptosis. These data warrant further investigation into the anti-neoplastic effects of statins in prostate tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.