The aim of this paper is to study the dynamics of a reaction-diffusion SIR epidemic model with specific nonlinear incidence rate. The global existence, positivity, and boundedness of solutions for a reaction-diffusion system with homogeneous Neumann boundary conditions are proved. The local stability of the disease-free equilibrium and endemic equilibrium is obtained via characteristic equations. By means of Lyapunov functional, the global stability of both equilibria is investigated. More precisely, our results show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than or equal to unity, which leads to the eradication of disease from population. When the basic reproduction number is greater than unity, then disease-free equilibrium becomes unstable and the endemic equilibrium is globally asymptotically stable; in this case the disease persists in the population. Numerical simulations are presented to illustrate our theoretical results.
We study the global dynamics of a SICA infection model with general incidence rate. The proposed model is calibrated with cumulative cases of infection by HIV-AIDS in Morocco from 1986 to 2015. We first prove that our model is biologically and mathematically well-posed. Stability analysis of different steady states is performed and threshold parameters are identified where the model exhibits clearance of infection or maintenance of a chronic infection. Furthermore, we examine the robustness of the model to some parameter values by examining the sensitivity of the basic reproduction number. Finally, using numerical simulations with real data from Morocco, we show that the model predicts well such reality.
In this paper, we propose two HIV infection models with specific nonlinear incidence rate by including a class of infected cells in the eclipse phase. The first model is described by ordinary differential equations (ODEs) and generalizes a set of previously existing models and their results. The second model extends our ODE model by taking into account the diffusion of virus. Furthermore, the global stability of both models is investigated by constructing suitable Lyapunov functionals. Finally, we check our theoretical results with numerical simulations.
In this paper, we propose a stochastic viral infection model with general functional response. The well posedness of the proposed model is investigated. Also, the extinction of the infection is fully determined by the basic reproduction number R 0. Furthermore, the dynamical behavior around the chronic infection equilibrium is established. Finally, Numerical simulations are given to illustrate our theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.