We give a classification of generic coadjoint orbits for the groups of symplectomorphisms and Hamiltonian diffeomorphisms of a closed symplectic surface. We also classify simple Morse functions on symplectic surfaces with respect to actions of those groups.This gives an answer to V.Arnold's problem on describing all invariants of generic isovorticed fields for the 2D ideal fluids. For this we introduce a notion of anti-derivatives on a measured Reeb graph and describe their properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.