Entropy production during the fatigue process can serve as a measure of degradation. We postulate that the thermodynamic entropy of metals undergoing repeated cyclic load reaching the point of fracture is a constant, independent of geometry, load and frequency. That is, the necessary and sufficient condition for the final fracture of a metal undergoing fatigue load corresponds to a constant irreversible entropy gain. To examine validity, we present the results of an extensive set of both experimental tests and analytical predictions that involve bending, torsion and tension-compression of aluminium 6061-T6 and stainless steel 304 specimens. The concept of tallying up the entropy generation has application in determining the fatigue life of components undergoing cyclic bending, torsion and tension-compression.
a b s t r a c tThis paper presents an experimental approach to fatigue damage in metals based on thermodynamic theory of irreversible process. Fatigue damage is an irreversible progression of cyclic plastic strain energy that reaches its critical value at the onset of fracture. In this work, irreversible cyclic plastic energy in terms of entropy generation is utilized to experimentally determine the degradation of different specimens subjected to low cyclic bending, tension-compression, and torsional fatigue. Experimental results show that the cyclic energy dissipation in the form of thermodynamic entropy can be effectively utilized to determine the fatigue damage evolution. An experimental relation between entropy generation and damage variable is developed.
An experimental study has been carried out to determine the critical damage parameter based on the concept of entropy flow. The fatigue damage is either a cumulative process that progresses toward a maximum tolerable damage, or is an irreversible progression of cyclic plastic strain energy that reaches its critical value at the onset of fracture. In the present study, irreversible heat dissipation in terms of entropy is utilized to experimentally determine the degradation of different specimens subjected to low cyclic bending fatigue. An experimental correlation between entropy and damage is proposed. It is shown that the cyclic energy dissipation in the form of thermodynamic entropy can be effectively utilized to determine the critical damage value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.