Computer-aided reading (CAR) of medical images is becoming increasingly common, but few studies exist for CAR in tuberculosis (TB). We designed a prospective study evaluating CAR for chest radiography (CXR) as a triage tool before Xpert MTB/RIF (Xpert).Consecutively enrolled adults in Dhaka, Bangladesh, with TB symptoms received CXR and Xpert. Each image was scored by CAR and graded by a radiologist. We compared CAR with the radiologist for sensitivity and specificity, area under the receiver operating characteristic curve (AUC), and calculated the potential Xpert tests saved.A total of 18 036 individuals were enrolled. TB prevalence by Xpert was 15%. The radiologist graded 49% of CXRs as abnormal, resulting in 91% sensitivity and 58% specificity. At a similar sensitivity, CAR had a lower specificity (41%), saving fewer (36%) Xpert tests. The AUC for CAR was 0.74 (95% CI 0.73–0.75). CAR performance declined with increasing age. The radiologist grading was superior across all sub-analyses.Using CAR can save Xpert tests, but the radiologist's specificity was superior. Differentiated CAR thresholds may be required for different populations. Access to, and costs of, human readers must be considered when deciding to use CAR software. More studies are needed to evaluate CAR using different screening approaches.
In rapidly growing, high burden urban centers, identifying tuberculosis (TB) transmission hotspots and understanding potential impact of interventions can inform future control and prevention strategies.Using data on local demography, TB reports, and patient reporting patterns in Dhaka South City Corporation (DSCC) and Dhaka North City Corporation (DNCC), Bangladesh, between 2010 and 2017, we developed maps of TB reporting rates across wards in DSCC and DNCC and identified wards with high rates of reported TB (i.e. "hotspots") in DSCC and DNCC. We developed ward-level transmission models and estimated the potential epidemiological impact of three TB interventions: active case finding (ACF), mass preventive therapy (PT), and a combination of ACF and PT, implemented either citywide or targeted to high-incidence hotspots. There was substantial geographic heterogeneity in the estimated TB incidence in both DSCC and DNCC: incidence in the highest-incidence wards was over ten times higher than in the lowest-incidence wards in each city corporation. ACF, PT and combined ACF plus PT delivered to 10% of the population reduced TB incidence by a projected 7-9%, 13-15%, and 19-23% over five years, respectively. Targeting TB hotspots increased the projected reduction in TB incidence achieved by each intervention 1.4-to 1.8-fold. The geographical pattern of TB notifications suggests high levels of ongoing TB transmission in DSCC and DNCC, with substantial heterogeneity at the ward level. Interventions that reduce transmission are likely to be highly effective and incorporating notification data at the local level can further improve intervention efficiency.
Background: In rapidly growing, high burden urban centers, identifying tuberculosis (TB) transmission hotspots and understanding potential impact of interventions can inform future control and prevention strategies.
Methods: Using data on local demography, TB reports, and patient reporting patterns in Dhaka South City Corporation (DSCC) and Dhaka North City Corporation (DNCC), Bangladesh, between 2010 and 2017, we developed maps of TB reporting rates across wards in DSCC and DNCC and identified wards with high rates of reported TB (i.e. hotspot) in DSCC and DNCC. We developed ward-level transmission models and estimated the potential epidemiological impact of three TB interventions: active case finding (ACF), mass preventive therapy (PT), and a combination of ACF and PT, implemented either citywide or targeted to high-incidence hotspots.
Results: There was substantial geographic heterogeneity in the estimated TB incidence in both DSCC and DNCC: incidence in the highest-incidence wards was over ten times higher than in the lowest-incidence wards in each city corporation. ACF, PT and combined ACF plus PT delivered to 10% of the population reduced TB incidence by a projected 7-9%, 13-15%, and 19-23% over five years, respectively. Targeting TB hotspots increased the projected reduction in TB incidence achieved by each intervention 1.4- to 1.8-fold.
Conclusions: The geographical pattern of TB notifications suggests high levels of ongoing TB transmission in DSCC and DNCC, with substantial heterogeneity at the ward level. Interventions that reduce transmission are likely to be highly effective, and incorporating notification data at the local level can further improve intervention efficiency.
We developed a novel method to align two data sources (TB notifications and the Demographic Health Survey, DHS) captured at different geographic scales. We used this method to identify sociodemographic indicators – specifically population density – that were ecologically correlated with elevated TB notification rates across wards (~100 000 people) in Dhaka, Bangladesh. We found population density was the variable most closely correlated with ward-level TB notification rates (Spearman's rank correlation 0.45). Our approach can be useful, as publicly available data (e.g. DHS data) could help identify factors that are ecologically associated with disease burden when more granular data (e.g. ward-level TB notifications) are not available. Use of this approach might help in designing spatially targeted interventions for TB and other diseases in settings of weak existing data on disease burden at the subdistrict level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.