In naturally fractured reservoirs, oil recovery from waterflooding relies on the spontaneous imbibition of water to expel oil from the matrix into the fracture system. The spontaneous imbibition process is most efficient in strongly water-wet rock where the capillary driving force is strong. In oil- or mixed-wet fractured carbonate reservoirs, however, the capillary driving force for the spontaneous imbibition process is weak, and therefore the waterflooding oil recoveries are low. The recovery efficiency can be improved by dissolving low concentrations of surfactants in the injected water to alter the wettability of the reservoir rock to a more water-wet state. This wettability alteration accelerates the spontaneous imbibition of water into matrix blocks, thereby increasing the oil recovery during waterflooding. Several mechanisms have been proposed to explain the wettability alteration by surfactants, but none have been verified experimentally. Understanding of the mechanisms behind wettability alteration could help to improve the performance of the process and aid in identification of alternative surfactants for use in field applications. Results from this study revealed that ion-pair formation and adsorption of surfactant molecules through interactions with the adsorbed crude oil components on the rock surface are the two main mechanisms responsible for the wettability alteration. Previous researchers observed that, for a given rock type, the effectiveness of wettability alteration is highly dependent upon the ionic nature of the surfactant involved. Our experimental results demonstrated that ion-pair formation between the charged head groups of surfactant molecules and the adsorbed crude oil components on rock surface was more effective in changing the rock wettability toward a more water-wet state than the adsorption of surfactant molecules as a monolayer on the rock surface through hydrophobic interaction with the adsorbed crude oil components. By comparing two anionic surfactants with different charge densities, we propose that wettability alteration processes might be improved through the use of dimeric surfactants, which have two charged head groups and two hydrophobic tails. Gemini surfactants where the molecules are joined at the head end are likely to be effective when ion-pair formation is the wettability alteration mechanism, and bolaform surfactants, in which molecules are joined by the hydrophobic tails, should be more effective in the case of surfactant monolayer adsorption.
Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible.Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly used to decrease this problem. Foam which is formed on the contact of nitrogen and surfactant increases viscosity of injected gas. This increases the oil–gas contact and sweep efficiency, although adsorption of surfactant on rock surface can causes difficulties and increases costs of process. Many parameters must be considered in design of SAG process. One of the most important parameters is SAG ratio that should be in optimum value to improve the flooding efficiency.In this study, initially the concentration of surfactant was optimized due to minimization of adsorption on rock surface which results in lower cost of surfactant. So, different sodium dodecyl sulfate (SDS) concentrations of 100, 500, 1000, 2000, 3000 and 4000 ppm were used to obtain the optimum concentration at 70 °C and 144.74×105 Pa. A simple, clean and relatively fast spectrophotometric method was used for determination of surfactant which is based on the formation of an ion-pair. Then the effect of surfactant to gas volume ratio on oil recovery in secondary oil recovery process during execution of immiscible surfactant alternating gas injection was examined experimentally. The experiments were performed with sand pack under certain temperature, pressure and constant rate. Experiments were performed with surfactant to gas ratio of 1:1, 1:2, 1:3, 2:1 and 3:1 and 1.2 pore volume injected. Then, comparisons were made between obtained results (SAG) with water flooding, gas flooding and water alternating gas (WAG) processes.This study shows that using the concentration of 1500 ppm of surfactant solution is practical and economical. Results also show that the SAG ratio of 1:1 with 0.2 cm3/min at temperature and pressure of 70 °C and 144.74×105 Pa, has the maximum oil removal efficiency. In this SAG ratio, stable foam was formed and viscous fingering delayed in comparison to other ratios. Finally, the results demonstrated that SAG injection has higher oil recovery in comparison to other displacement methods (water flooding, gas flooding and WAG).
The main production mechanism during water flooding of naturally fractured oil reservoirs is the spontaneous imbibition of water into matrix blocks and resultant displacement of oil into the fracture system. This is an efficient recovery process when the matrix is strongly waterwet. However, in mixed-to oil-wet reservoirs, secondary recovery from water flooding is often poor. Oil production can be improved by dissolving low concentrations of surfactants in the injected water. The surfactant alters the wettability of the reservoir rock, enhancing the spontaneous imbibition process. Our previous study revealed that the two main mechanisms responsible for the wettability alteration are ion-pair formation and adsorption of surfactant molecules through interactions with the adsorbed crude oil components on the rock surface. Based on the superior performance of surfactin, an anionic biosurfactant with two charged groups on the hydrophilic head, it was hypothesized that the wettability alteration process might be further improved through the use of dimeric or gemini surfactants, which have two hydrophilic head groups and two hydrophobic tails. We believe that when ion-pair formation is the dominant wettability alteration mechanism, wettability alteration in oil-wet cores can be improved by increasing the charge density on the head group(s) of the surfactant molecule since the ion-pair formation is driven by electrostatic interactions. At a concentration of 1.0 mmol L -1 a representative anionic gemini surfactant showed oil recoveries of up to 49% original oil-in-place (OOIP) from oil-wet sandstone cores, compared to 6 and 27% for sodium laureth sulfate and surfactin, respectively. These observations are consistent with our hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.