A new “hand‐calculated” method is introduced for prediction of detonation pressure of explosive and mixture of explosives with general formula CHNOFClAl. Suitable decomposition paths are used to estimate heat of detonation and detonation pressure. These decomposition paths are based on the distribution of oxygen atoms between carbon and hydrogen atoms as well as the degree of oxidation of aluminum. For CHNOFCl explosives, it is shown that the predicted detonation pressures with the new method are more reliable with respect to one of the best available empirical methods for loading densities greater than or equal 0.8 g cm−3. Since aluminized explosives have non‐ideal behavior, the new method does not require using full or partial oxidation of aluminum, which is usually required by a computer code. The predicted results of the new model also provide more reliable results than outputs of complex computer code with the BKWS equation of state.
Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among renewable energy systems, a great deal of research has been conducted especially on photovoltaic effect, wind energy and fuel cell in the recent years. This paper describes dynamic modeling and simulation results of a small wind-photovoltaic-fuel cell hybrid energy system. The hybrid system consists of a 500 W wind turbine, a photovoltaic, a proton exchange membrane fuel cell (PEMFC), ultracapacitors, an electrolyzer, a boost converter, controllers and a power converter that simulated using MATLAB solver. This kind of hybrid system is completely stand-alone, reliable and has high efficiency. In order to minimize sudden variations in voltage magnitude ultracapacitors are proposed. Power converter and inverter are used to produce ac output power. Dynamics of fuel-cell component such as double layer capacitance are also taken into account. Control scheme of fuel-cell flow controller and voltage regulators are based on PID controllers. Dynamic responses of the system for a step change in the electrical load and wind speed are presented. Results showed that the ability of the system in adapting itself to sudden changes and new conditions. Combination of PV and wind renewable sources is made the advantage of using this system in regions which have higher wind speeds in the seasons that suffers from less sunny days and vice versa
Background
Epidemics of cutaneous leishmaniasis (CL) are occurring more frequently and spreading faster and farther than before in many areas of the world. The present study aimed to assess a long-lasting emerging epidemic (2005–2019) of 5532 cases with anthroponotic CL (ACL) in peri-urban areas of Kerman city in southeastern Iran.
Methods
This descriptive-analytical study was carried out for 15 years in Kerman province, southeastern Iran. The data were passively obtained through the health surveillance system and the Kerman Leishmaniasis Research Center. Every subject was diagnosed using direct smear microscopy. The representative causative agent was further examined by ITS1-PCR, PCR-RFLP, 7SL RNA gene sequencing and phylogenetic analyses. For each subject, a case report form designating demographic and clinical data was recorded.
Results
A different pattern of ACL incidence was found in peri-urban areas compared to that in the city of Kerman. The incidence rate of ACL cases has significantly increased (P < 0.001) from 2005 to 2016 in new settlements with a gradual decline after that. The overall average risk of contracting the disease was 7.6 times higher in peri-urban areas compared to Kerman city, an old endemic focus. All isolates consisting of six variants were confirmed to be Leishmania tropica. The overall pattern of the ACL infection indicates that the etiological agent of ACL is propagated and transmitted by the bite of female Phlebotomus sergenti sandflies from person to person from dissimilar clones as reflected by the complexity of the migrants’ backgrounds in the province.
Conclusions
The movement of populations and establishment of new settlements in peri-urban areas close to endemic areas are major risk factors for and are directly linked to CL. The underlying factors of this emerging ACL epidemic caused by L. tropica were disasters and droughts, among others. A robust commitment to a multilateral approach is crucial to make improvements in this area. This will require decisive coordinated actions through all governmental factions and non-governmental organizations. Furthermore, active and passive case detection strategies, early diagnosis, and effective treatment could help control the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.