Recently, lots of works have been done on the optimal power management of wireless devices. This leads to the main idea of ambient energy harvesting. Among various energy harvesting approaches, one is to use radio waves existing in the ambient environment for battery charging, called RF energy harvesting. In this chapter, in order to improve the RF energy harvesting performance, we utilize spectrum sensing to allow the wireless devices to select the frequency band with maximum power that exceeds a predefined threshold to charge the device (this power threshold can be determined according to battery type and its required charging power) and the device can use this power for battery charging. Also, a novel voltage multiplier circuit is proposed. By means of simulations and experimental tests, it can be seen that after detection of our desired 1 mW RF signal, system output power is about 532μ W and 450μ W in simulation and practical situations respectively.
The deployment of internet of things (IOT) devices in several applications is limited by their need of having batteries as a power source. This has led many researchers to make efforts on simultaneous wireless information and power transfer (SWIPT) systems design. Increasing the bandwidth provides higher capacity; however, due to the narrowband response of conventional power transfer subsystems, power delivery is decreased. In order to design an optimum wideband SWIPT system, first, a realistic model of the system, including antennas and rectifier, should be developed. Then, proper methods to increase the bandwidth of subsystems for optimum power delivery can be proposed. In this paper, a wideband SWIPT system (300 MHz bandwidth at the center frequency of 1.44 GHz) while considering realistic limitations of antennas and rectifiers is designed. To optimize the system performance, a novel power allocation method is proposed. Using this algorithm, Pareto fronts of Shannon channel capacity versus power delivery in three scenarios (broadband antennas without considering rectifier, broadband antennas with narrowband rectifier and broadband antennas with broadband rectifier) are compared. The results show that, without considering the realistic behaviour of the subsystems, the performance is largely overestimated. Furthermore, this model allows for designers to optimize each subsystem directly and assess its effect on the overall SWIPT system performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.