Tuberculosis (TB) is one of the oldest health problems in the world and it remains unresolved. Multidrug-resistant-TB and extensively resistant-TB are a serious problem for control programs. The evaluation of available antibiotics has gained importance in recent years for the treatment of resistant TB. Beta-lactam antibiotics inhibit cell wall biosynthesis in the bacteria; the presence of beta-lactamase enzyme in TB bacilli raises the question of whether this group of antibiotics can be used in treatment. As a result, it has been reported that the combination of beta-lactam antibiotics with beta-lactamase is effective against Mycobacterium tuberculosis both in vitro and in vivo. The aim of this article is to review and discuss up-to-date knowledge and future perspective on beta-lactam antibiotics and TB.
Background: The quick diagnosis and early initiation of antibiotic therapy in bacteria-induced infections is of paramount importance. Accordingly, the rapid identification of the causative agent, the short-term results of antibiotic sensitivity, the selection and use of right antibiotics for treatment further highlights the significance of this issue. Objectives: This study aimed to develop a new susceptibility testing method to provide rapid results in Escherichia coli clinical isolates and report the antibiotic susceptibility test results to clinicians in a short period. Methods: In the study, one hundred and ten E. coli clinical isolates were tested. In this regard, antibiotics recommended by the "Clinical and Laboratory Standards Institute (CLSI)" for testing the sensitivity of E. coli isolates, including amoxicillin-clavulanate, cefixime, ceftriaxone, ertapenem, ciprofloxacin, gentamicin, trimethoprim-sulfamethoxazole, and nitrofurantoin were tested. For quality control, E. coli ATCC25922, E. coli ATCC35218, Staphylococcus aureus ATCC29213, and E. coli 13846NTCC strains were used. The broth microdilution method recommended by CLSI was used as the reference method. Minimum inhibitory concentration values were determined, and antimicrobial susceptibilities were then determined according to the “European Committee on Antimicrobial Susceptibility Testing (EUCAST)” criteria. In the next phase, the results of the resazurin microplate method (RMM) were compared. Results: The comparison of the RMM developed in the present study with the reference method revealed that the calculated essential agreement ratios for eight antibiotics varied from 82.72 to 100%, and the categorical agreement values ranged from 95.45 to100%. Conclusions: According to the findings, the RMM results were highly in agreement with the results of the reference method. RMM allows the detection of antibiotic susceptibility quickly (e.g., within 5 hours) as such it is preferred, especially for laboratories with limited facilities. However, further multi-center studies are recommended to use this method in routine laboratories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.