This study aims to evaluate the toxic effects of Fusarium oxysporum on root parasitic weed, Orobanche spp. Comparative genetic and gene expression studies were conducted on uninfected and fungus-infected orobanches. In genetic studies, isolated total DNA was amplified by RAPD PCR. Fragment properties were analysed by GTS test. According to the results, the fragment properties of control and Fusarium infected (experimental) groups varied widely; and it has been observed that Fusarium has genotoxic effects on the DNA of orobanches. In gene expression studies, the expression levels of genes encoding enzymes or proteins were associated with ROS damage and toxic effects, therefore, gene expressions of Mn-superoxide dismutase (SOD), Zn-superoxide dismutase (=SOD2, mitochondrial), glutamine synthetase (GS), heat shock protein gene (HSP70), BAX, Caspase-3 and BCL2 were significantly higher in the experimental group. In the light of obtained data, it was concluded that F. oxysporum (1) caused heavy ROS damage in Orobanche (2) induced significant irrevocable genotoxic effects on the DNA of Orobanche, (3) degraded protein metabolism and synthesis, and finally (4) triggered apoptosis. The results of this study can be a ground for further research on reducing the toxic effects of Fusarium on agricultural products, so that advancements in bio-herbicide technology may provide a sustainable agricultural production.
During extensive surveys in fields heavily infested by broomrape in the Trakya Region-Turkey, a different new fungus, Aspergillus alliaceus, was isolated from the infected broomrape. It is aimed to investigate whether or not it is really a pathogen for Orobanche. The fungi was exposed to a greenhouse environment in order to assess its pathogenicity and virulence against Orobanche cernua. In addition, infection tests on Orobanche seeds were also performed under laboratory conditions. The fungus was subjected using two different methods, exposure to a liquid culture with conidial solution and a sclerotial solid culture with fungal mycelia. Cytological studies were carried out at light, TEM and SEM levels. The results show that the sclerotial solid culture with fungal mycelia quickly caused necrosis and was more effective than the other type. It also greatly diminished attachments, tubercles, and caused the emergence of shoots and an increase in the total shoot number of Orobanche. In addition, both when the fungi was exposed to both soil and used to contaminate sunflower seeds, its pathogenicity was more effective. Consequently, it was determined that A. alliaceus was an effective potential biological control of broomrape throughout its life cycle from dormant seed to mature plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.