Functionally graded materials (FGM) belong to advanced composite materials class whose mechanical properties vary continuously from one surface to another at macro level. Thick walled annular structures are widely used in industry as nuclear reactors, long pipes used for carrying gases/oil, pressure vessels etc. Elastic analysis of FG thick walled cylindrical and spherical pressure vessels subjected only to internal pressure are studied. The material properties (Young' s modulus-Poisson' s ratio) are assumed to obey the power-law function through the wall thickness. Under these assumptions the governing equations of the FG vessels become a two-point boundary value problem. The analytical solution of such an equation can not be obtained except for simple grading functions. Complementary Functions Method is performed to solve governing equation in order to obtain displacement and stress distributions depending on inhomogeneity parameters.
In this paper, an elastic analysis of a thick-walled functionally graded cylinder subjected to internal pressure is examined. Material properties for the isotropic material are estimated to obey the Mori-Tanaka homogenization scheme through the thickness. The resulting two-point irregular boundary value problem is solved by the pseudospectral Chebyshev method that converts the boundary value problem to the system of equations, which can be solved by any appropriate decomposition method. Benchmark solutions are used to validate the method. The effect of the arbitrarily chosen volume fraction index is demonstrated for stress and displacement distributions. The effective stresses for different inner radius and volume fraction index are also discussed.
ÖzSürekli sistem olarak modellenen eksenel yüklenmiş heterojen bir çubuğun elastik davranış problemi analiz edilmiştir. Bu problemi modelleyen diferansiyel denklemlere Laplace dönüşümü uygulanarak zamandan bağımsız sınır değer problemi eksenel koordinatlarda elde edilmiş daha sonra bu problem tamamlayıcı fonksiyonlar metodu (TFM) tarafından çözülmüştür. Sayısal olarak çözülen denklemler Durbin'in sayısal ters dönüşümünü yardımıyla zaman uzayına dönüştürülmüştür. Her bir yükleme tipi ve inhomojenlik parametresi için elde edilen sayısal sonuçlar, analitik sonuçlar ve ANSYS sonuçları ile karşılaştırılmıştır. Bu birleşik yöntem, iyi yapılandırılmış, basit ve etkili bir yöntemdir.Anahtar Kelimeler: Heterojen çubuk, Zorlanmış titreşim, Laplace, Tamamlayıcı fonksiyonlar yöntemi Forced Vibration Analysis of A Heterogeneous Rod by Complementary Functions Method AbstractThe axial vibration problem formulation and solution of a heterogeneous rod modelled as a continuous system were analyzed. By applying Laplace transformation to the differential equations that model to this problem, time independent boundary value problems were obtained in the axial coordinates, then this problem is solved by the complementary functions method. The equations solved numerically is converted into time space with the help of Durbin's numerical inverse transformation. The numerical results that obtained for each load type and inhomogeneity parameter were compared with analytical and ANSYS results in the literature. This unified method is well-structured, simple and efficient.
Bu çalışmada, mekanik ve ısıl özelliklerinin radyal eksen boyunca üstel bir fonksiyonla değiştiği varsayılan, eksenel simetrik, ince, dikdörtgen profilli dairesel bir kanatçıktaki sıcaklık dağılımı ve sıcaklık farklarından dolayı oluşan ısıl gerilmeler, pseudospectral Chebysev ve sonlu elemanlar yöntemleri ile ele alınmıştır. Chebyshev yöntemin doğruluğu literatürde mevcut analitik çözümle karşılaştırılarak test edilmiştir. Kanatçık, ZrO_2/Ti-6Al-4V malzeme çifti ile derecelendirilmiş, uygulanan sınır koşulları altında sıcaklık dağılımı ve ısıl gerilmeler elde edilmiştir. Problem, pseudospektral Chebyshev ve sonlu elemanlar yöntemleri ile ayrı ayrı çözülmüş ve elde edilen sonuçlar grafiksel olarak karşılaştırılmıştır. Pseudospektral Chebyshev yönteminin sonlu elamanlar yöntemine göre daha az nokta sayısı ile yakın sonuçlar verdiği gözlemlenmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.