Pulsed electromagnetic fields (PEMF) and pulsed radio frequency energy (PRFE) have been shown to accelerate wound healing process due to its ability to stimulate cellular proliferation. However, comparative efficacy of PEMF and PRFE on an in vitro wound healing study has yet to be studied. The present study examined the effect of PEMF and PRFE on an in vitro wound healing model developed by using 3T3 mouse fibroblasts. Cells were exposed to PEMF (75 Hz frequency, square waveform, and 1-mT magnetic field) and PRFE (27.12 MHz, Phase-shift keying (PSK), and 13-dBm amplitude signal) for 5 hours. The migration rates of 3T3 fibroblasts were determined by capturing images at time points of 0, 12, 24, 48, and 72 hours. Cell proliferation was also quantified. The results of the migration and proliferation assays showed that PEMF and PRFE applied groups had significantly greater cell proliferation and migration compared to control group. In addition, PRFE application showed significantly faster wound area closure compared to PEMF application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.