Abstract. The aim of this paper is to report on an experimental study about Turkish Earthquake Code on suggested strengthening method. The proposed method uses existing brick infill walls and the strengthening is done with the application of external mesh reinforcement and plaster. 5 nonductile 1/2 scaled, one bay, two storey RC specimens were tested under a reversed cyclic loading. The first two specimens were reference specimens and the other ones were strengthened with the proposed method. The specimens contained several design and construction mistakes such as low concrete quality and improper steel detailing. Strength, stiffness and storey drifts of the test specimens were measured. The results of the test on these frames were compared with the reference specimens. The effects of the reinforced mesh plaster application for strengthening on behaviour, strength, stiffness, failure mode and ductility of the specimens were investigated. Unexpected failure modes were observed during the testing and the results were summarized in this paper.
Recently repair and strengthening of existing buildings become a popular research topic. The strengthening of buildings necessitates the evacuation of the structure. On the other hand, school, hospital type structures must continue their function. In this study exterior shear wall addition to the existing exterior frames is proposed. Since the application is applied to the exterior of the building, the structure can continue its function during the application. In this study, 1/3 scaled 4 specimens were tested under reversed cyclic loading simulating the seismic action. First reference specimen was the bare frame and didnt contain a strengthening and tested to see the reference behavior. Specimens have several design mistakes to represent the existing older structures. The other specimens retrofitted with different configurations. The second specimen was strengthened with exterior shear walls and contained a window opening. The last specimen was also retrofitted with exterior shear wall but the shear walls were divided into two pieces. The load-displacement curves, envelope curves, relative displacement curves, energy absorption curves and rigidity curves were presented and compared within the paper. In the conclusion, the capacity increase of the frame was discussed and several recommendations were presented.
Abstract. In this study, the effect of earthquake loads on roof gable walls and the behaviours of these roof gable walls are investigated. In preparation of the study, two experiments on cradle roof system which gets and does not get any loads off the roof members were carried out in all. The experiments were performed on the shaking table in Earthquake Research Department of General Directorate of Disaster Affairs. Through the experiments, some considerable results were obtained on the behaviours of roof gable walls under the effect of horizontal dynamic loads. The results obtained at the end of these examinations are given and discussed. Furthermore, suggestions to make the brick gable walls more reliable against the loads of earthquake are given. When the results of the experiments were generally taken into consideration, it was realized that the gable walls in both roof systems would partly or completely collapse even under the effect of a little horizontal dynamic load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.