Abstract-In recent years, due to the appealing features of cloud computing, large amount of data have been stored in the cloud. Although cloud based services offer many advantages, privacy and security of the sensitive data is a big concern. To mitigate the concerns, it is desirable to outsource sensitive data in encrypted form. Encrypted storage protects the data against illegal access, but it complicates some basic, yet important functionality such as the search on the data. To achieve search over encrypted data without compromising the privacy, considerable amount of searchable encryption schemes have been proposed in the literature. However, almost all of them handle exact query matching but not similarity matching; a crucial requirement for real world applications. Although some sophisticated secure multi-party computation based cryptographic techniques are available for similarity tests, they are computationally intensive and do not scale for large data sources.In this paper, we propose an efficient scheme for similarity search over encrypted data. To do so, we utilize a state-of-theart algorithm for fast near neighbor search in high dimensional spaces called locality sensitive hashing. To ensure the confidentiality of the sensitive data, we provide a rigorous security definition and prove the security of the proposed scheme under the provided definition. In addition, we provide a real world application of the proposed scheme and verify the theoretical results with empirical observations on a real dataset.
The process of record linkage seeks to integrate instances that correspond to the same entity. Record linkage has traditionally been performed through the comparison of identifying field values (e.g., Surname), however, when databases are maintained by disparate organizations, the disclosure of such information can breach the privacy of the corresponding individuals. Various private record linkage (PRL) methods have been developed to obscure such identifiers, but they vary widely in their ability to balance competing goals of accuracy, efficiency and security. The tokenization and hashing of field values into Bloom filters (BF) enables greater linkage accuracy and efficiency than other PRL methods, but the encodings may be compromised through frequency-based cryptanalysis. Our objective is to adapt a BF encoding technique to mitigate such attacks with minimal sacrifices in accuracy and efficiency. To accomplish these goals, we introduce a statistically-informed method to generate BF encodings that integrate bits from multiple fields, the frequencies of which are provably associated with a minimum number of fields. Our method enables a user-specified tradeoff between security and accuracy. We compare our encoding method with other techniques using a public dataset of voter registration records and demonstrate that the increases in security come with only minor losses to accuracy.
In this paper, novel ideas are presented for solving the automated web service composition problem. Some of the possible real world problems such as partial observability of the environment, nondeterministic effects of web services and service execution failures are solved through a dynamic planning approach. The proposed approach is based on a novel AI planner that is designed for working in highly dynamic environments under time constraints, namely Simplanner. World altering service calls are done according to the WS-Coordination and WS-Business Activity web service transaction specifications in order to physically recover from failure situations and prevent the undesired side effects of the aborted web service composition efforts.
The integration of information dispersed among multiple repositories is a crucial step for accurate data analysis in various domains. In support of this goal, it is critical to devise procedures for identifying similar records across distinct data sources. At the same time, to adhere to privacy regulations and policies, such procedures should protect the confidentiality of the individuals to whom the information corresponds. Various private record linkage (PRL) protocols have been proposed to achieve this goal, involving secure multi-party computation (SMC) and similarity preserving data transformation techniques. SMC methods provide secure and accurate solutions to the PRL problem, but are prohibitively expensive in practice, mainly due to excessive computational requirements. Data transformation techniques offer more practical solutions, but incur the cost of information leakage and false matches. In this paper, we introduce a novel model for practical PRL, which 1) affords controlled and limited information leakage, 2) avoids false matches resulting from data transformation. Initially, we partition the data sources into blocks to eliminate comparisons for records that are unlikely to match. Then, to identify matches, we apply an efficient SMC technique between the candidate record pairs. To enable efficiency and privacy, our model leaks a controlled amount of obfuscated data prior to the secure computations. Applied obfuscation relies on differential privacy which provides strong privacy guarantees against adversaries with arbitrary background knowledge. In addition, we illustrate the practical nature of our approach through an empirical analysis with data derived from public voter records.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.