Our earlier Low-on-Latency (dubbed as LoL) solution offered an accurate bandwidth prediction and rate adaptation algorithm tailored for live streaming applications that targeted an end-to-end latency of up to two seconds. While LoL was a significant step forward in multi-bitrate low-latency live streaming, further experimentation and testing showed that there was room for improvement in three areas. First, LoL used hardcoded parameters computed from an offline training process in the rate adaptation algorithm and this was seen as a significant barrier in LoL's wide deployment. Second, LoL's objective was to maximize a collective QoE function. Yet, certain use cases have specific objectives besides the singular QoE and this had to be accommodated. Third, the adaptive playback speed control failed to produce satisfying results in some scenarios. Our goal in this paper is to address these areas and make LoL sufficiently robust to deploy. We refer to the enhanced solution as LoL + , which has been integrated to the official dash.js player in v3.2.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.